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Abstract

Helmet or Head-Mounted Displays (HMD) applications have expanded to include

a range from advanced military cockpits to consumer glasses. However, users have

documented loss of legibility while undergoing vibration. Recent research indicates that

undesirable eye movement is related to the vibration frequency a user experiences. In

vibrating environments, two competing eye reflexes likely contribute to eye movements.

The Vestibulo-ocular Reflex responds to motion sensed in the otoliths while the pursuit

reflex is driven by the visual system to maintain the desired image on the fovea. This study

attempts to isolate undesirable eye motions that occur while using a HMD by participants

completing simple visual tasks while experiencing vertical vibration at frequencies between

0 and 10 Hz. Data collected on participants’ head and helmet movements, vibration

frequency, acceleration level, and visual task are compared to eye movements to develop

a method to understand the source of the unintended eye movements. Through the use of

Electro-Oculography (EOG) eye movements were largest when a 4 Hz vibration frequency

was applied, and are significantly different from the EOG signal at 2, 8 and 10 Hz. Stepwise

regression indicated that head pitch acceleration and helmet slippage pitch acceleration

were correlated with EOG values.
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AN ANALYSIS OF EYE MOVEMENTS WITH HELMET MOUNTED DISPLAYS

I. Introduction

1.1 General Issue

Advancements in technology have increased the quality and flexibility of Helmet Mounted

Displays (HMDs), which has increased their application in operational environments. Many

air and ground platforms use HMDs to maintain information in the user’s field of view

regardless of head position. The availability of information is appealing when quick

decisions must be made, which encourages widespread HMD use. For example, the F-

35 has replaced the Head-Up Display (HUD) with an HMD to display all critical flight

information (1). Special operations groups use HMDs while riding All Terrain Vehicles

or other land-based vehicles. The constant exposure to and availability of usable data

improves user performance on tasks such as missile targeting, as well as improving user

situation awareness (30).

Although HMDs have demonstrated improved user situation awareness in many

situations, under low frequency vibration, 10 Hz and below, HMDs suffer from a reduction

in effectiveness. Experts attribute this loss of effectiveness to the pilot’s inability to perceive

the information displayed while in motion to the human Vestibulo-Ocular Reflex (VOR).

The VOR attempts to correct the eye position when the otoliths in the inner ear detect

head movement by moving the eye in an equal magnitude and opposite direction of the

motion. The goal of the VOR is to stabilize the line-of-sight on objects viewed by the

user. Although the VOR is essential to human performance under normal conditions, while

wearing an HMD, the display moves with the head, and therefore the VOR causes the eye to

1



rotate away from the information the user is attempting to view. This eye movement results

in the information displayed on the HMD to appear blurred, reducing the user’s ability to

obtain the information from the display. Movement of the helmet with respect to the head,

referred to as helmet slippage, is also a recorded occurrence during vibration (24). With

HMDs, movement of the helmet results in display and image movement. Another factor

of interest is the pursuit reflex (PR), which isa neural reflex that moves the eye in response

to movement of the object being focused on (12). At lower frequencies, the visual system

may be able to track objects on the retina, permitting the PR to maintain fixation on a

slowly moving target. However, at higher frequencies, when the PR is not able to respond

quickly enough to maintain focus on the image, the information displayed on the HMD

will become blurred. The inability of the user to utilize the HMD to gain information in

low-frequency vibratory environments degrades the advantages a HMD provides and can

degrade user performance especially if the HMD provides critical information.

Although most fixed-wing aircraft do not experience low frequency vibration under

normal flying conditions, buffeting can cause vibration that induce the VOR for short

periods. Additionally, rotary-wing aircraft commonly experience vibration that are

typically associated with the VOR. Even if the vibration levels that induce the VOR are

uncommon and occur for short periods, the situations in which these conditions occur are

crucial moments, such as combat turns and stalls, that determine the success of a mission.

The user’s ability to obtain critical information at these times to make decisions and perform

tasks is essential. Surface irregularities are the major source of vibration in ground vehicles,

causing low frequency vibration that could excite the VOR as well.

2



1.2 Problem Statement

Although research has documented user performance degradation while wearing a HMD in

a vibration environment (19), minimal experimentation characterizing the VOR or PR has

occurred. To correct these issues, a better understanding of how the eye moves while using

a HMD at different vibration frequencies is required. The overall goal of this research is

to analyze human reaction to low frequency vibration, including eye movements that occur

while completing tasks on a HMD, to determine how to stabilize the HMD image on the

retina. A possible solution to this issue is the use of two accelerometers, one located on the

helmet, the other located on the seat. A processor attached to the HMD would utilize inputs

from the accelerometers to correct the image placement on the HMD so the user would be

able to see the information at all times. The goal of this thesis is to investigate specific

questions that must be addressed to assess the feasibility of this concept or to suggest more

viable concepts.

1.3 Research Objectives/Hypothesis

This research project focuses on characterizing the user’s eye movements while the user

completes visual tasks on a HMD and experiences sinusoidal vibration of known frequency

and magnitude along the z-axis. Over the course of this research, the experimentation must

address several sub-objectives before being able to achieve the eventual goal of improving

user performance on a HMD. These objectives include:

• Obtain a baseline analysis of eye movements while performing basic visual tasks on

a HMD in a simple vibration environment.
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• Analyze experimental data to associate the VOR and PR effect with reference to

vibration frequencies, vibration magnitude, acceleration levels, head position, and

head orientation.

• Develop an initial predictive algorithm for eye position based on the analysis of the

experimental data that can be used to correct image placement in HMDs.

• Analyze the VOR effect in a multi-axis, real-world vibration environment and

compare the effects to the simple vibration environment data to determine the

effectiveness of characterizing the VOR in a complex environment.

• Implement the predictive algorithm in a multi-axis, real-world vibration environment

to analyze the feasibility and usefulness of a compensatory algorithm.

Results from previous vibration and VOR research, in addition to real-world performance

reports, allow for several hypotheses about the results of this research to be made.

• It is possible to track eye movements in order to analyze eye movements in a vibration

environment using electro-oculography (EOG).

• The VOR will be able to compensate effectively for head movement, except for

in the 4-8 Hz range, where the gain and phase of the VOR will be unable to

synchronize. At higher frequencies, the body dampens the vibration, increasing the

VOR effectiveness.

• Due to more complex eye movements, the VOR will be less effective during a

tracking task than a fixation task.

• Compensatory algorithms and associated hardware can be developed for HMDs after

successful tracking of eye movements and analysis of VOR effects.

4



1.4 Research Focus

Based on the complexity of the eventual research goal, the focus of the current research

is to characterize eye movements with respect to vibration frequency, acceleration level,

head motion, and head position. Previous research by Uribe began a baseline analysis

of VOR effects that will provide the basis of this research (27). By simplifying real-

world environments to a single axis, and conducting simple visual tasks, the general eye

movements can be identified.

1.5 Investigative Questions

In accord with the focus of this research, the questions designed to guide this study are:

• To what extent can eye movements be accurately tracked and characterized in a

vibration environment?

• To what extent are eye movements predictable while undergoing vibration?

1.6 Methodology Overview

The method will include designing and conducting a human-subjects experiment, then

applying data to answer the research questions. The experimental data will be obtained

from human subjects wearing a modified helmet, undergoing low frequency, sinusoidal

vibration along the z-axis. Previous studies have documented a range between 2-10 Hz

as the frequencies that have the greatest effect on human biodynamics and performance. A

modified HMD will present simple visual tasks, such as fixation and tracking, to the subject

as well as an infrared diode and digital video camera to illuminate the eye and record video

of eye movements. In addition to the video, EOG electrodes will be placed on subject’s

forehead and around the eyes to monitor eye movement with respect to the head.

5



1.7 Assumptions/Limitations

Many simplifying assumptions are necessary to develop the baseline data, as little research

has been previously conducted in this area. Utilizing a single-axis vibration table to conduct

the experiment allows the independent variables to be isolated, but is not representative of

the complex vibration that users experience in real-world environments, which consists

of vibration in multiple axes at a variety of frequencies. Additionally, only one vibration

frequency will be applied at a time, to analyze the causes of the eye movements. Simple

visual tasks will be completed, one at a time, to characterize the eye movements in various

conditions, unlike operational conditions which require multiple tasks to be completed

simultaneously, or with very little transition time. These limitations affect the realism of

the experiment. It may be difficult to extrapolate the simplified conditions to the more

complicated real world. In addition to the simplified environment, vibration effects vary

among people based on several factors such as body type and posture, making general

application of the research results challenging.

1.8 Implications

Although past research and development projects for HMDs have attempted to correct

for vibration using compensation algorithms, employing various filters that utilize inputs

from the environment, such as platform vibration, without understanding eye movements,

these efforts have not been successful. Specifically, these endeavors to correct vibration

have suffered from latency issues and inaccurate compensation for eye movements. In the

absence of competent algorithms larger text/graphic have been implemented to increase

user performance under all conditions. This reduces the potential effectiveness of HMDs

by reducing the amount of information that can be displayed and counteracting the

advancements in technology that have been made in high resolution HMDs. The eventual
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goal of this research is to generate an accurate compensation algorithm for eye movements.

This algorithm would be integrated onto future HMDs to correct the display while the

user experiences vibration. The stable image would reduce the required size of text and

graphics displayed on the HMD, allowing more information to be presented to the user.

This correction would allow the user to be able to perceive the information displayed under

all conditions, increasing their situation awareness and ability to effectively complete their

mission.

1.9 Summary

The academic format for this thesis was chosen to present the research and findings.

Chapter 2 contains a paper accepted into the 2014 Industrial and Systems Engineering

Research Conference (ISERC), authored by Kalyn Tung, Dr. Michael Miller, Dr. John

Colombi, and Dr. Suzanne Smith. The paper contains the analysis of the fixation task

data. Chapter 3 is a article to be submitted to the Society of Information Display (SID).

The article describes the findings for Uribe’s work and compares his results with the results

from the experiment completed for this thesis. The article is authored by Kalyn Tung,

Dr. Michael Miller, Daniel Uribe, Dr. John Colombi, and Dr. Suzanne Smith. Chapter 4

contains the conclusions from the two papers and recommendations for future work.
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II. Eye movement in a Vibrating HMD Environment

Helmet or Head-Mounted Displays (HMD) applications have expanded their range

from advanced military cockpits to consumer glasses. However, users have documented

loss of legibility while undergoing vibration. Recent research indicates that undesirable

eye movement is related to the vibration frequency a user experiences. In vibrating

environments, two competing eye reflexes likely contribute to eye movements. The

Vestibulo-Ocular Reflex (VOR) responds to motion sensed in the otoliths while the pursuit

reflex is driven by the visual system to maintain the desired image on the fovea. This study

attempts to isolate undesirable eye motions that occur while using a HMD by participants

completing simple visual tasks while experiencing vertical vibration at frequencies between

0 and 10 Hz. Data collected on participants’ head and helmet movements are compared

to eye movements to develop a method to understand the source of the unintended eye

movements. These experiments are needed to expand our understanding of vibration-

induced eye movements, with the objective to construct systems, which ameliorate the

effects of low frequency vibration on HMD legibility.

Keywords

Human Factors, Displays, Vibration Effects

2.1 Introduction

The use of the modern Head or Helmet Mounted Display (HMD) began in the 1970s

as a method for off-boresight targeting on fighter aircraft (7). Advancements in HMD

capabilities have expanded their use into many application areas, such as first-person

8



video (FPV) radio-controlled aircraft, and recently high profile consumer products, such

as Google Glass.

In spite of the enormous benefits HMDs provide, several documented human factors

issues have persisted. As advancements in HMDs occur, the support systems become more

complex. Excessive amounts of information being processed results in perceptible latency,

a difference between an input signal and the appropriate response from the system. This

can result in inaccurate information being displayed to the user at a crucial time (7). As

HMDs are capable of presenting a rich set of information displaying too much information,

or improperly displaying information can distract the user, forcing them to concentrate on

the display, not their surroundings, to obtain information (26). Another issue is the fatigue

associated with HMDs. The complex systems associated with the HMD add weight to the

helmet. Excessive weight and unusual center of mass positions can cause muscle fatigue,

especially at higher g-levels (17). Users have also documented issues with perceiving

information displayed at low frequency vibration levels because of blurring (18). The effect

of low frequency vibration on eye movements while wearing a HMD is the focus of this

research.

2.1.1 Vibration.

Vibration can be transferred from the environment to the user and the user’s head in many

environments, but is prevalent in vehicles. For example, aircraft experience vibration

along all axes at frequencies from 0.05-100 Hz. Fixed wing jet aircraft can experience

inconsistent vibration, known as buffeting, normally during crucial flight regimes just prior

to aircraft stall. The F-15 experiences sharp vertical accelerations around 8.5 Hz during

tactical maneuvers, such as high angle of attack, high-g turns (24). Rotary wing aircraft

experience more consistent vibration levels, with the main rotor as the source for the most
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prevalent frequencies, and the tail rotor producing secondary vibration (19). Vibration also

occurs in ground-based vehicles when traveling on rough roads or other terrain (33).

Vision decrements caused by vibration are well documented. These decrements occur

for HMD users as vibration is transmitted through the body to the head and are especially

troubling at frequencies near the whole body resonance frequency (∼4-8 Hz) where the

highest head motions occur. Although the magnitude of the effects vary significantly based

on frequency and acceleration levels, the vibration effects at frequencies of 15 Hz and

below are primarily caused by body transmission (22). The transmission of low frequency

vibration through the body is dependent upon many factors, such as posture, weight, and

orientation.

Smith and Smith conducted an experiment analyzing the effects of head orientation on

a tracking task while wearing a helmet. The participants were vibrated on a six-degrees-of-

freedom vibration table while the head, helmet, and slippage accelerations were measured

in addition to tracking errors and percent time on target. Tracking errors were largest and

percent time on target were lowest when the head was oriented to the side, indicating off-

axis head movements degrade visual performance in vibration environments (25).

2.1.2 Human Eye Reflexes.

The eye has multiple methods of adjusting to the environment to improve perceptual ability.

These adjustments occur constantly, and usually without conscious effort. The two reflexes

that are expected to contribute significantly to the eye movements while wearing a HMD

in a vibrating environment are the Vestibulo-Ocular Reflex (VOR) and the Pursuit Reflex

(PR). The VOR shifts the eyes in response to perceived motion from the vestibular system

to compensate for motion of the user’s head. This reflex is most noticeable during activities

such as running or jumping, where the user’s head is moving with respect to objects which

are focused on and would be imperceptible without constant adjustments of the eyes to
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compensate for the movement of the user’s head and has been documented to occur during

vibration (20). The VOR is primarily effective in compensating for rotational movements

of the head, as translational movements cause changes in the distance from the object to the

eye, which cannot be determined by the vestibular system (12). The frequencies at which

the VOR is effective at are still being investigated, with some research indicating the VOR

operates up to 10 Hz (31), while others indicate up to 20 Hz (32). The PR adjusts eye

position as the object of interest moves with respect to the observer. The eye’s ability to

smoothly move in pursuit of a target varies based on the velocity of the target, as well as the

direction of movement. Generally, the PR is effective in compensating for relatively slow

object motion but becomes less effective with higher object speeds.

While wearing a HMD, objects displayed on the screen move with the user as the

HMD moves with their head. However, the vestibular system perceives the motion, either

from the user moving their head, or from the environment exerting forces upon the user,

and the VOR attempts to compensate for this motion. When wearing a head-fixed HMD,

the VOR causes the eye to move away from the objects the user is attempting to view on the

display. As a result, the image of information presented on the HMD moves on the user’s

fovea, resulting in image blur, degrading visual performance.

2.2 Motivating Research

Although the effect of vibration on visual performance, such as reading, has been studied

extensively in the past (22; 12), recent research in our laboratory by Uribe has focused

on better understanding eye movements as a function of vibration. During this research,

participants completed simple visual tasks on a constructed HMD while undergoing

low frequency vertical vibration. Uribe recorded video of the participants’ right eye

during the experiment using a microcamera attached to the helmet, while simultaneously
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employing electro-oculography (EOG) to determine eye movements, and an accelerometer

to determine vertical head motion. The EOG results have been reported elsewhere (29; 28).

The original goal of this research was to analyze both the video and EOG data to further

understand the eye movements.

The video analysis demonstrated that not only was the eye moving in response to

vibration, but the HMD-fixed camera was moving with respect to the user’s head during

vibration.

To understand the helmet motion, a program was created in MATLAB which

correlated an image of the participant’s eye while viewing a fixation target without vibration

to images of the same participant’s eye that was collected on the same target while

undergoing vibration. Vertical offset corresponding to the peak correlation was recorded.

The root-mean-square (RMS) values from the vertical offset data were calculated and

compared to the EOG RMS values Uribe developed from the same participants (27). Figure

2.1 presents a comparison of the calculated values.

Figure 2.1. Comparison between EOG average RMS values and Video average RMS

values
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As shown, the shape of the curve created by mapping helmet movement as a function

of frequency matches the EOG RMS values as a function of frequency. This analysis raises

questions as to whether the eye movements as recorded using the EOG are created by the

VOR in response to head movement, or in response to PR tracking movement of the helmet.

Further it is unclear whether the VOR response and helmet motion are compensating for

one another or combining to further degrade visual performance.

Unfortunately, the previous research did not record helmet rotational motion or

slippage of the helmet on the user’s head. Therefore, it was necessary to conduct a follow-

on study, with the purpose of understanding head, helmet, and slippage motions, and how

they relate to eye movement while wearing an HMD.

2.3 Methodology

The method involved a human-subjects experiment in which participants were exposed

to low frequency vibration between 2 and 10 Hz at two different acceleration levels,

including 0.1 g and 0.2 g. Each participant wore a helmet-mounted display which

was equipped with a miniature video camera, an IR illumination source, and a set of

accelerometers. Additionally, the participants were fit with a bite bar containing a different

set of accelerometers and EOG leads to permit recording of eye movement data.

2.3.1 Participants.

Eleven participants between 22 and29 years old volunteered to take part in the experiment,

including 10 male participants. The participants were screened to not have any inner ear

or eye injuries which could affect the eye movements of interest. The participants were not

allowed to wear glasses during the experiment, however, soft contact lenses and corrective
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surgeries were allowed. Female participants were not allowed to be pregnant or have breast

implants.

2.3.2 Vibration Table.

During the experiment, participants were seated upright on a human-rated vertical-axis

servohydraulic vibration table. Participants were secured into a rigid seat with seat pan and

seat back cushions, that was attached to the vibration table, similar to seats found in cockpits

of fixed-wing aircraft, as shown in Figure 2.2. The facility technician ran the vibration table

during the experiment, inputting the proper sinusoidal frequencies and displacement values

necessary to attain the specified acceleration levels.

Figure 2.2. Subject on vibration table

2.3.3 Helmet.

A GENTEX HGU/53 Aircrew Helmet was selected, as it is a commonly used helmet

onboard rotary and fixed-wing aircraft. The helmet consists of a hard, protective outer
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layer, a padded interior layer for comfort, and a chin strap to secure the helmet. It also has

mounts for a visor on either side of the opening for the user’s face.

A custom visor was created to fit into the mounts on the helmet, shown in Figures 2.3

and 2.4. The visor’s main components were two adjustable side brackets and a plate across

the front. The plate attached to a binocular LCD display system that was acquired from

a pair of Vuzix Wrap 920 augmented reality glasses and provided 640 by 480 pixels over

about a 31 degree diagonal field of view. The display system had been used in previous

research to display simple visual tasks to users, simulating the types of task accomplished

on a HMD. The plate also had a secondary purpose of blocking a majority of the ambient

light, allowing the user to more easily view the display system. The adjustable sides

allowed the user to adjust the distance to the display to improve the visibility of the display.

The visor also included a bracket that held an IR LED and a SuperCircuits PC206XP

micro camera, which were directed at the user’s right eye. The power of the LED was

adjustable up to a maximum level which was approximately one fifth the eye safe level for

the illumination distance applied during the experiment.

Figure 2.3. Modified helmet from the front. Figure 2.4. Modified helmet from the side.
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2.3.4 Electrooculography.

A BIOPAC MP150 data acquisition system was used to collect the EOG signal. EOG

was applied to measure the potential difference, in mV, between electrodes on opposing

sides of the eye. The Acknowledge software from BIOPAC was used to provide a vertical

movement and a horizontal movement signal at a sampling rate of 1000 Hz.

2.3.5 Accelerometers.

A triaxial accelerometer pack was used to measure the input acceleration at the base of the

seat in the fore-and-aft (X), lateral (Y), and vertical (Z) directions. The pack consisted of

three-orthogonally-arranged miniature accelerometers (Entran EGAX-25) embedded into a

two-piece plastic disk. Two sets of six miniature accelerometers (Entran EGA 125-10D)

were orthogonally-arranged and strategically glued inside of a two-piece plastic mount,

and attached to a bite bar and to the top of the helmet. This accelerometer arrangement

permitted the measurement of the translational and rotational movements of the user’s head

and helmet. The bite bar was custom made for each participant’s teeth, obtained using

dental impression compound and a mouthpiece for a secure fit. This custom fit bite bar

permitted accurate accelerometer readings of the participants head motions.

All acceleration data were collected onto a 48 channel data acquisition system (EME,

Corp), filtered at 250 Hz, and digitized at 1024 samples per second. The EOG and

accelerometer data were triggered simultaneously for each 15 seconds of task completion

at each frequency.
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2.3.6 Experimental Procedure.

Upon arriving, participants completed an informed consent and underwent appropriate

screening procedures. The participants were then seated on the acceleration table and

instrumented as necessary. The participants then completed the first of two test sessions.

During each test session, the participants first completed an eye movement calibration.

The calibration required the participants to fixate on a target at a sequence of five locations,

indicating the center and the extremes of target location during the experiment. The

measurements from the calibration period were used to understand the magnitude of the

EOG signals for each participant. The participants then completed three visual tasks at

each frequency and at a fixed acceleration. The first task was a fixation task, during which

the participant focused on a dot which remained stationary in the middle of the screen. The

target used in the task was a black dot with a strong contrast to the background, sized so

it would be easily located, but not so large that the participants had a large area to fixate.

The participants also completed both a horizontal tracking task and a target search task.

However, only results from the fixation task are reported in this paper. Upon completing

the tasks at one acceleration level, the instrumentation was removed from the participant;

they were debriefed and permitted to leave. Participants then completed the second test

session on a different day, following the same procedure, only experiencing a different

acceleration level.

2.3.7 Experimental Design.

The participants were exposed to six different sinusoidal vibration frequencies, including

0, 2, 4, 6, 8, and 10 Hz. These frequencies were experienced at 0.1 g (∼0.69 m/s2 rms)

peak acceleration level for one test session and 0.2 g (∼1.37 m/s2 rms) peak acceleration

level for the other test session. The order the acceleration levels were experienced by the

participants was counterbalanced. These vibration levels and their durations were compared
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to the current human exposure guidelines (ISO 2631-1: 1997), with overall levels indicating

there was low risk of health effects. The procedure was reviewed and approved through the

Air Force IRB process.

As the task was a simple visual staring task, no learning effects were expected.

Previous research indicates that the largest eye movements due to the VOR were expected

at frequencies in the 4-6 Hz range, and as each frequency included a 15 second acclimation

period, the effect of the order of the frequencies was expected to be minimal.

2.3.8 Data Analysis.

The EOG data for the fixation task was analyzed by first decomposing the signal into

trial portions and selecting the longest time period in each without a blink. Blinks were

clearly indicated by a very large amplitude spike in the vertical EOG signal. The EOG

signal was then normalized by applying a normalization constant for each participant. The

normalization constant was determined by applying a 0.5 s moving average to the portion

of the calibration signal corresponding to the movement of the eye from the top to the

bottom of the display. The 90th percentile value from the segment when the participant was

looking toward the top of the screen, and the 10th percentile value from when the participant

was looking towards the bottom of the screen were obtained. The difference between the

90th and 10th percentile values was estimated to represent the magnitude of the EOG signal

which corresponded to the movement of the eye from the top to the bottom of the display.

A 0.5 second moving average was calculated and subtracted from the normalized

signal to act as a high pass filter, removing low frequency drift. This centered the EOG

signal on 0, and the remaining signal was assumed to represent eye movement in response

to the vibration.

Power Spectral Densities (PSDs) for each of the signals were calculated. While most

signals demonstrated a peak in the PSD at the applied frequency, in some cases, other
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frequencies had a higher peak, and in a few cases, no obvious peak at the applied frequency

was shown. As a result, the RMS value of the EOG signal was calculated to capture

the magnitude of the eye movements at all frequencies, rather than only at the applied

frequency. The RMS values were used as an estimate of the eye movement at the respective

frequency and acceleration level. The EOG signal RMS values for one subject were almost

3 standard deviations from the mean in 3 of the 5 frequencies during one test session; the

large influence of these values resulted in that subject’s data being excluded from further

analysis.

Helmet slippage was calculated as the difference between the time histories of the bite

bar and the helmet in each of the corresponding directions, X, Y, and Z. The rotational

accelerations were calculated based on the subtraction of the time histories between the

associated accelerometers, and then dividing by the moment arm. Rotational displacements

were estimated using the FFT of the acceleration signal, dividing by the square of the

angular frequency, and multiplying by -1. The inverse FFT was then applied to yield the

estimated displacement time history. The acceleration and displacement RMS spectra were

estimated from the respective PSDs in 0.5 Hz increments. Since the vibration was limited to

the vertical axis, only the vertical translation accelerations and pitch rotational accelerations

and displacements were used in the analysis. The RMS values associated with the input

frequency were extracted from the spectra.

A repeated measures analysis of variance (ANOVA) was conducted on the RMS

values from both the EOG and the accelerometers to understand the effects of the different

frequencies and acceleration levels. As the data consistently failed Mauchley’s test of

sphericity, the Greenhouse-Geisser correction was consistently applied across each reported

measure. Schefe’s Least Significant Difference (sLSD) post-hoc analyses were applied to

determine differences between frequency levels. A significance level of 0.05 was used

during the statistical analysis.
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2.4 Results

Figure 2.5 shows the mean RMS values plus and minus one standard deviation of the

EOG signal at the applied frequencies and acceleration levels. As can be seen the EOG

RMS values appear higher at 4 and 6 Hz than at the other frequencies as expected. The

ANOVA indicated that frequency had a significant effect on the EOG RMS values (F(1.85,

16.62)=5.95; p=0.013)). The effect of the acceleration level approached significance

(F(1,9)=3.67; p=0.088). The interaction of frequency with acceleration was not significant.

The pair-wise comparisons indicated that the RMS values at 4 and 6 Hz were significantly

higher as compared to the 2, 8 and 10 Hz conditions at both acceleration levels.

Figure 2.5. Mean and standard deviations

of the Normalized EOG RMS values at

different frequencies

Figure 2.6. Mean and standard deviations

of vertical head acceleration RMS values

at different frequencies

Figure 2.6 presents the mean RMS values plus and minus one standard deviation

for the vertical head acceleration at both acceleration levels. The ANOVA indicated that

frequency had a significant effect on the vertical head acceleration (F(2,11,19.02)=25.01;

p≤0.000). The effect of acceleration level was also significant (F(1,9)=568.359; p≤0.000),
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as was the interaction between frequency and acceleration level (F(1.43,12.91)=9.32;

p=0.005). To analyze the interaction the ANOVA was applied for each acceleration level.

At 0.1g, the RMS values for 6 Hz were significantly larger than all other frequencies. At

0.2 g, the RMS values for both 4 and 6 Hz were significantly larger than the RMS values at

2, 8, and 10 Hz.

Figure 2.7 shows the mean RMS values plus and minus one standard deviation

for the head pitch acceleration as a function of frequency at both acceleration levels.

For the head pitch acceleration, as with the vertical head acceleration, the effects of

frequency (F(2.23,20.10)=26.39; p≤0.000), acceleration (F(1,9)=21.636; p=0.001) and the

interaction (F(2.10,18.91)=3.713; p=0.042) were significant. At 0.1 g, the RMS value at

4 Hz was significantly larger than for 2 and 10. The RMS value at 6 Hz is significantly

larger than the RMS values for all other frequencies. At 0.2 g, the RMS value at 6 Hz was

significantly larger than the RMS value at 2, 8 and 10 Hz. The RMS value for 8 Hz was

significantly different from the RMS values for 2, 4, and 6 Hz.

Figure 2.7. Mean and standard deviations

of head pitch acceleration RMS values at

different frequencies

Figure 2.8. Mean and standard deviations

of helmet slippage pitch acceleration RMS

values at different frequencies
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Figure 2.8 shows the mean values plus and minus one standard deviation for the

helmet slippage pitch acceleration. The effect of frequency (F(1.82,16,41)=5.52; =0.017)

was significant. Acceleration (F(1,9)=3.09; p=0.113) and the interaction term (F(2.09,

18.85)=1.53; p=0.241) were not significant. The average helmet slippage pitch acceleration

RMS values generally increased as frequency increased. Only 2 Hz was significantly

different from all other frequencies.

Figure 2.9 shows the mean RMS values plus and minus one standard deviation for the

head pitch angle. Frequency (F(1.88,16.89)=45.86; p≤ 0.000), acceleration (F(1,9)=36.70;

p≤0.000) and the interaction (F(2.39,21.55)=7.92; p=0.002) were significant. The ANOVA

applied for each acceleration level indicated that the RMS values at 2 and 4 Hz were

significantly larger than the RMS values at 6, 8 and 10 Hz. A similar trend existed at

0.2 g.

Figure 2.9. Mean and standard deviations

of head pitch angle RMS values at different

frequencies

Figure 2.10. Mean and standard deviations

of helmet slippage pitch angle RMS value-

sat different frequencies

Figure 2.10 shows the mean RMS values plus and minus one standard deviation

for the helmet slippage pitch angle at both acceleration levels. The frequency (F(2.12,
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19.12)=22.10; p≤0.000), the acceleration (F(1, 9)=21.40; p=0.001), and the interaction

between frequency and acceleration (F(1.78, 16.04)=3.88; p=0.046) were significant. The

ANOVA applied to each acceleration level indicated that at 0.1 g, 2 Hz was significantly

larger than all other frequencies. Both 4 and 6 Hz were significantly different from 2, 8,

and 10 Hz, and 8 and 10 Hz were significantly less than 2, 4, and 6 Hz. At 0.2 g, only 2 Hz

was significantly larger than all other frequencies.

2.4.1 Discussion.

The primary goal of this research was to understand the relationships between head and

helmet motions, including helmet slippage, and eye movements during low frequency

sinusoidal vibration.

The results of this study showed that eye movements, characterized through the use of

EOG signals showed the highest peaks at 4 and 6 Hz, and the magnitude of the responses

were not statistically significant for the acceleration level. Comparing these results to

the head and helmet motions, both the vertical head acceleration RMS and head pitch

acceleration RMS showed curves that were similar in shape to the EOG curves. However,

the highest peak occurred at 6 Hz at the lower acceleration level, and at both 4 and 6 Hz at

the higher acceleration, indicating a dependence on the acceleration level. The significant

effect of acceleration on the accelerometer values, but the lack of significant effect from

acceleration level on the EOG values possibly indicates a higher noise level in the EOG

signal, or the VOR response is not sensitive enough to perceive the changes in acceleration

level.

While helmet slippage acceleration might have an effect on eye movements as the

frequency and acceleration level change, the relationship is less obvious. For 2, 4, and 6 Hz

the helmet slippage pitch accelerations increase similarly to the EOG values, however, at 8

and 10 Hz, the RMS curves appear to differ significantly. This might be caused by the eye’s
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reaction time. At higher frequencies the eye might not be able to register the movements

and react appropriately. The similar values between the head pitch acceleration and the

helmet slippage pitch acceleration values indicate that helmet slippage could have an affect

on eye movements.

The helmet slippage pitch angle RMS indicates the amount the helmet, and therefore

the display, moved with respect to the head. Although the motivating research indicated

there might be some relationship between the EOG signal and the helmet slippage, the

relationship does not appear to be as significant as hypothesized once more detailed values

were produced.

To further explore the interrelationship of the variables, a stepwise regression to

predict the EOG RMS values for individual participants and experimental conditions was

conducted using frequency, acceleration level, and the accelerometer values as inputs.

The resulting function included the head pitch acceleration and helmet slippage pitch

acceleration value as significant factors and accounted for 28.3% of the variability in the

data. The estimated regression function is shown in Equation 2.1. The estimated regression

function

EOG = 0.3399+0.0363·HeadPitchAcceleration−0.0473·HelmetS lippagePitchAcceleration

(2.1)

The regression function indicates that the head pitch acceleration and helmet slippage pitch

acceleration have relationships with the EOG signal. As the change in frequency had a

significant effect on the EOG RMS values, this also indicates that any frequency effects

are contained in the head pitch acceleration or helmet slippage pitch acceleration variables.

Although the adjusted R2 is a relatively low value, the large variance in the EOG RMS

values between participants would be difficult to account for with this method.
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2.5 Conclusion

Eye movements recorded through EOG indicate that eye movement magnitude is not

linearly related to the vibration input to a seat pan. This finding provides one potential

reason why previous algorithms to compensate for vibration in HMDs have failed as these

methods have attempted to compensate for the VOR as a function of vibration of the vehicle.

Results demonstrate that both head pitch angle and vertical acceleration are also not

linearly related to seat pan vibration and appear to have a shape similar to the shape of

the eye movement magnitudes as a function of frequency. Therefore, it may be possible

to improve the accuracy of compensation algorithms, if these algorithms were designed to

respond directly to head acceleration, without being concerned with the vibration of the

aircraft.

Although it is possible that both the VOR and eye movements are also affected by

helmet slippage with respect to the user’s head as the user’s visual system attempts eye

movements to compensate for the relative motion of the HMD, the results of this study

are not yet conclusive. Future research should focus on minimizing the helmet slippage,

possibly through the use of a mask or padding, to isolate the effect of vibration on the eye

movements, or using other methods to isolate the effects of the VOR from the PR.

In this study we captured EOG as a source for tracking eye movements. This method

does not provide ideal tracking of the human eye, with the resulting signal containing

significant noise and apparent drift, which precludes the determination of absolute eye

position. Unfortunately, optical tracking of the eye with a helmet-mounted camera and

illumination source is also complicated by the fact that the resulting video contains not only

changes due to eye movements, but changes in eye location due to helmet slippage. Future

research into the phenomena of interest in this study would benefit from the application of

other eye tracking technologies which are more reliable in a vibrating environment.
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III. Comparing Eye Movements While Wearing a Helmet-Mounted Display

3.1 Introduction

Head or Helmet Mounted Displays (HMDs) were originally applied to aid fighter pilots

aim at enemy aircraft by aiming weapons through mechanically following head position

(7). Modern day HMDs have increased their capabilities to display critical information to

the user, regardless of head position. In addition to aviation related applications, HMDs

have spread into other environments, such as on-board land vehicles and commercial use

(3; 2; 4). These displays permit information to be constantly available, permitting users to

make decisions quicker based on improved situation awareness (10).

However several issues with HMDs have been documented. Attention capture occurs

when the user focuses on the images displayed rather than their environment, thereby losing

their awareness of their surroundings (26). Fatigue can result from increased head born

mass (17). Degraded visual performance has also been reported for HMD used under

vibration (18). This degradation of visual performance in the presence of vibration is of

interest in the current research.

Two eye reflexes are expected to contribute to eye movements during whole-body

vibration, the Vestibulo-Ocular Reflex (VOR) and the pursuit reflex (PR) (12). The VOR is

triggered by the otoliths in the inner ear triggering eye movements to compensate for head

motion. The presence of this reflex is most noticeable during high impact activities such as

running or jumping as it permits the runner’s eyes to remain focused on an object despite

the vertical movement of the head during these activities. The PR is a neural reflex which

guides the motion of the eye to follow the motion of an object being focused on when the

object moves on the eye’s fovea. Research indicates the pursuit reflex is able to suppress
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the VOR at low frequencies, such as 2 Hz and below (12), but is unclear on the relationship

between these reflexes at higher frequencies.

Vibration can occur in many environments, produced by blade frequencies or buffeting

in air vehicles, propulsion over rough surfaces in surface vehicles, or simple body motion

during locomotion. However, the eye does not necessarily respond to the motion of the

vehicle, but the motion of the observer’s head. High head accelerations are most likely

to occur near whole body resonance, which is accepted to be near 4 Hz for an individual

seated upright (22). This finding is supported by Smith and Smith who investigated the

effect of head orientation on head motions and tracking performance during vibration. This

research demonstrated that the most extreme head and helmet rotations occurred in the pitch

direction regardless of head orientation, with peak vibration levels between 2 and 6 Hz (25).

Research indicates the VOR is effective only at low frequencies, however specific

ranges vary, some indicating up to 10 Hz, while others suggest the VOR is effective up to

20 Hz (12). The VOR is also only useful to counter rotational movements, as translational

head movements result in changes in distance that the VOR cannot correct for (12).

Various methods have been attempted to counter the negative effects vibration has on

HMD legibility. It has been demonstrated that by increasing the size, contrast, and spacing

of the information displayed on the HMD visual performance can be enhanced (13; 11; 16).

However, increasing the size of the text or images displayed to the user limits the amount

of information that can be displayed. This compensation method also counteracts the

advancements in screen resolution, which permit smaller objects to be displayed while

retaining their clarity.

Another method to improve visual performance with a HMD while under vibration is

to apply a filter to counter the vibration. Several compensation filters have been researched

that adjust the location of the image based on the vibration input. However, they have

not experienced consistent success at improving the user’s visual performance, and have
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not been implemented onto any existing systems. Wells and Griffin attempted an image

stabilization filter that countered all head motions using accelerometers attached to the

helmet; however, the filter experienced issues during intentional head motions, causing

movements in the displayed image when the movements were unnecessary (32). Daetz

applied an adaptive filter to predict head vibration based on accelerometers attached

to the aircraft, but these filters experience latency issues, given the complex transfer

function necessary to quickly compute the expected output (8). Daetz also implemented

a conventional notch filter to remove the noise due to vibration. While the performance on

a tracking task improved, the filter did not compensate the image appropriately for other

visual tasks (8). Another method to improve visual performance is the use of strobing

the display. When vibrating at 0.7 g at 12 Hz, flashing a display in synchrony with

the vibration reduced the reading error to a rate not significantly different from the non-

vibrating error rate (5). The versatility of the HMD is difficult to account for, and an

individual compensation filter has been unable to accurately adjust the display to allow

for improved visual performance in all areas.

The original intent of this research project was to understand how the eyes move while

using a HMD in a simple vibration environment. By understanding how the eye moves, it

is hoped that it will be possible to design and build improved image compensation means

for HMDs within a vibrating environment. A pair of experiments are reported to relate eye

movements to the vibration, as well as the head and helmet movements experienced.

3.2 Experiment 1

The initial experiment was designed to understand the effect of various sinusoidal

frequencies of vibration upon eye movements. As it was believed that eye movements

might be influenced by the type of task the user performed, the experiment also required
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participants to perform two separate tasks, specifically fixation on a stationary target and

tracking a horizontally moving target. Eye movements were recorded using multiple

approaches as the advantages or disadvantages of these approaches were uncertain.

3.2.1 Experimental Methodology.

3.2.1.1 Participants.

Six volunteers (including 3 male) between the ages of 20 and 26 years with a mean of

23 years participated in the study. The participants had not experienced any vestibular

anomalies, including inner ear infections, within the month preceding the investigation or

reported any discomfort or pain symptoms associated with the musculoskeletal system.

Individuals requiring glasses or hard contacts were precluded from participating in the

experiment to simplify vision system-based eye tracking.

3.2.1.2 Apparatus.

During the experiment, participants were seated on a single-axis, vertical vibration table

which imparted between 2 and 10 Hz vibration at approximately 0.1g to the seat on which

they were seated. Participants were instrumented with an accelerometer mounted on an

individually-molded mouth piece to measure head acceleration, electrodes to facilitate

electro-oculographic recording of eye movements, and a helmet which provided both a

display to provide a visual stimulus as well as a miniature video camera for eye recording

and an IR illumination source to illuminate the eye, providing both a well-lit region around

the eye and a specular highlight to potentially provide eye tracking information. This

apparatus permitted a controlled sinusoidal vibration to be input to the participant and to

record head accelerations and eye movements in response to the vibration. The low levels

of vibration and brief exposures used in this study were associated with a low potential for

health risk in accordance with the current human exposure guidelines (14).
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The vibration table was located in a Single-Axis Servo-hydraulic Vibration Facility

supported by the Air Force Research Laboratory’s 711th Human Performance Wing. The

table is shown in Figure 3.1. The table imparted vibration to the participants’ chair. The

human-rated single-axis vibration table is capable of recreating operational exposures in

the vertical direction. A rigid seat with seat pan and seat back cushions were mounted

on top of the Single-Axis platform. This seat was designed to transfer the vibration to

the participant. Although the apparatus is capable of more complex vibration, only single

frequency, sinusoidal signals were applied during the experiment. The sinusoidal frequency

varied in 2 Hz increments between 0 and 10 Hz with estimated amplitude for a target

acceleration level of 0.1 g. The table was not calibrated for each individual and therefore

this amplitude likely varied somewhat as a function of the mass of the participant.

Figure 3.1. Single-Axis Servo-hydraulic vibration table.

A custom fit, gel mouth guard was molded for each individual participant prior to

the experiment and a SS27 Tri-axial Accelerometer from Biopac was mounted on the

mouth guard to measure the linear acceleration of the participants’ head. Additionally, six

electrodes were mounted on the participants’ face to monitor the movement of the eyes with
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respect to the head via Electro-Ogulography (EOG). A BioPac MP150 recorded both the

linear acceleration and EOG signals with a sample rate of 1000 Hz. This EOG procedure

recorded the potential difference between the electrodes as the eye moved from the center,

neutral position towards the electrodes, which were positioned above and below the right

eye and to either side of the eyes to obtain a vertical and a horizontal eye movement signal,

respectively.

The participants were then fit with a HMD system, which supported visual tasks

while blocking the participant’s vision of the environment in their central visual field.

The HMD included a typical Air Force Flight Helmet, equipped with a tinted visor. The

helmet designed for this experiment is shown in Figures 3.2 and 3.3. A 640 by 480 pixel

color, binocular LCD display was mounted on the outside of the visor. This display was

taken from a pair of Vuzix Wrap 920 augmented reality glasses and was driven by a

laptop computer to provide an image to each eye with a field of view of 30 degrees and

a refresh rate of 60 Hz. The display included optics to provide an image at optical infinity.

A microcamera (SuperCircuits micro-lens video camera) was attached to the helmet and

focused on the eye. This camera is 0.375 in x 0.675 in in size and outputs sufficient

image quality for analysis with 420 TV lines. This camera was connected to a digital

video recorder to permit a video of the user’s eye to be recorded throughout the experiment.

A visibly opaque # 87 Kodak Wratten 2 Optical Filter was fit in the barrel of the camera to

permit the camera to receive energy only in the IR portion of the spectrum. Additionally, an

infrared LED was mounted about 2 inches from the camera and illuminated the participant’s

right eye. This LED both illuminated the eye and the region of the participants’ face around

the eye as well as provided a specular highlight from the back of the cornea, making it

possible to use this feature for future analysis of the images to determine eye orientation.

Custom electronics were used to drive the LED and provide adjustment. These electronics

insured a safe level of exposure, permitting a maximum exposure of 1.94 mW/cm2 at the
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eye, but was adjusted to provide only enough illumination to satisfactorily illuminate the

eye prior to each condition. The maximum value is well below the maximum safe value

of 10 mW/cm2 for constant IR exposure in the 720-1400 nm range (15). The design of the

miniature camera and illumination source was adapted from a design by (6).

Figure 3.2. Helmet design from Experiment 1 - front

3.2.2 Experimental Procedure.

During the experiment, participants completed two tasks. Each task required the participant

to fixate on a cross-hair target. During the first task (Task A), the target was stationary in

the center of the field of view. During the second task (Task B), the same target moved

around the display in a rectilinear pattern. During Task B, the target began at the center of

the display, moved horizontally to the left edge of the display and followed the perimeter

of the display. This target increased in velocity from each apex in the pattern, reaching a
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Figure 3.3. Helmet design from Experiment 1 - side

rate of 190 pixels per second and maintained this rate before decelerating to zero velocity

as it approached the next apex. This velocity profile permitted the participants to track the

target without overshooting as the target changed direction. Participants completed two

trials, performing each task at each vibration frequency on two separate days. On the first

trial, the vibration frequency increased with each sequential exposure while the frequency

order was randomized for the second trial.

During each experimental trial, each participant first viewed a set of calibration targets

on the display which were displayed at the center and the corners of the display. Each

participant was then exposed to a vibration condition for 15 seconds for acclimation

and then performed the task under the same vibration for 15 additional seconds. Once

completed, the frequency of vibration was changed and the task repeated for the subsequent

vibration condition. The order of frequency conditions differed between the first day’s trial

and the second. The participants completed both Task A and Task B on each of the two

days, with half completing Task A before Task B. Given this procedure, the factors of Task
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(A or B), Frequency (0, 2, 4, 6, 8, 10 Hz) and Trial (Day 1 or 2) were combined in a full

factorial experimental design.

3.2.3 Data Analysis.

The primary dependent variable of interest was the magnitude of vertical eye movement,

indicated by a change in the vertical EOG signal measured in mV. An additional analysis

investigated the consistency of head acceleration.

The data analysis applied the following steps to the vertical component of the EOG

data. First, the program segmented the signal collected during the fixation in Task A or

horizontal target tracking Task B from the remainder of the data. The program applied a

moving average filter to the segmented data to eliminate low-frequency drift in the EOG

signal by applying a low-pass filter. The program then applied a second filter to determine

high amplitude values caused by blinks or other erroneous eye movements, removing this

data from the data stream. The program then determined the Root Mean Square (RMS)

value in mV for each participant at each frequency condition and each task during each trial.

The program then calculated the power spectrum using Welch’s method (9), estimating

the power spectral density (PSD) at different frequencies using an overlapping window

principle and computing the discrete Fourier Transform. The resulting array was the RMS

value as a function of frequency for each task. Finally, the program selected the peak

frequency. This frequency consistently corresponded to the frequency of the input signal

for all frequencies between 2 and 10 Hz. Unfortunately, one participant’s data for one trial

differed from all other data by more than an order of magnitude. Examination of video

recordings of the participant’s eye did not appear different from the video recording for any

other trial. This discrepancy was attributed to lack of electrical contact by one of the EOG

sensors and the corresponding data for the participant’s entire session was discarded.
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Data analysis further included an analysis of variance (ANOVA) to understand whether

there was a statistical effect of Task, Frequency, or trial on the RMS of the EOG signal.

The ANOVAs employed the Residual Maximum Likelihood method to adjust for missing

values. The model treated the participants as a random effect.

Further, during analysis the stability of the HMD with respect to the participant’s head

was questioned. To understand helmet motion, a program was created in MATLAB which

analyzed the video from the camera to correlate an image of the participant’s eye without

vibration to images of the same participant’s eye that was collected on the same target while

undergoing vibration. Vertical offset corresponding to the peak correlation was recorded.

This measure provided a sinusoidal output signal which correlated with the amplitude of

helmet motion. RMS values from the vertical offset data were calculated and compared to

the EOG RMS values.

3.2.4 Results.

The analysis indicated a significant effect of frequency (F(4, 21)=26.20; p<0.0001) and

the Frequency by Task interaction was additionally statistically significant (F(4, 21)=6.14;

p=0.002). Task, approached, but was not statistically significant (F(1, 5)=5.84; p=0.058).

The effect of the Frequency by Task interaction is depicted in Figure 1. As the reader can

see, the RMS EOG signal in normalized mV increases as the vibration frequency increases

from 2 to 4 Hz and then decreases as the frequency is further increased to 10 Hz. A Tukey

post hoc test indicated that the RMS value was statistically higher for the 4 Hz frequency

than for any other frequencies. Further, the RMS values for the 6, 8, and 2 Hz conditions

were significantly larger than the RMS values for the 10 Hz condition. Finally, the RMS

values for the 8, 2, and 10 Hz conditions were lower than for the 6 Hz condition.

The RMS values for each Task at each frequency was compared with a series of

ANOVAs. These analyses indicated that the RMS value for Task B was higher than the
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RMS value for Task A only at the 4 Hz condition (F(1, 5)=6.71; p=0.0464). The condition

at 6 Hz was close to, but not statistically significant (F(1, 5)=4.49; p=0.0881). Therefore,

the variation in eye movement as a function of frequency is greater for the smooth pursuit

condition than for the fixation condition at the worst-case conditions. The EOG RMS values

are shown in Figure 3.4.

Figure 3.4. EOG RMS Values from Task A and Task B at the corresponding

frequencies.

It was necessary to determine if the changes in eye movement magnitudes resulted

from head movements or changes in VOR response. Data from the z-axis segment of the

accelerometer data for each participant was compared at each vibration frequency. Since

the chair vibration input was constant for all tasks, the RMS values in the z-axis for head

vibration should be nearly identical. An ANOVA indicated no statistical difference between

the head vibration amplitudes as a function of task or Frequency by Task interaction.

The means of the RMS acceleration values are plotted in Figure 3.5 for Tasks A and

B. Interestingly, the highest RMS values in vertical head acceleration occurred at 4 and 6
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Hz. However, the peak in vertical head acceleration occurred at 6 Hz instead of 4 Hz as

found from the eye motion data.

Figure 3.5. Accelerometer RMS Values from Task A and Task B at the corresponding

frequencies.

However, analysis of the video recording demonstrated that the helmet moved with

respect to the head, referred to as helmet slippage, meaning the display was not stationary

on the eye. As the accelerometer data only measured head movement, the amount of helmet

motion could only be determined through the video. The vertical offset between an image

of the participant’s eye while not being vibrated and the image while undergoing vibration

was recorded for each recording. A comparison between the EOG RMS values, and the

RMS values of the video offset is displayed in Figure 3.6.

Based on the behavior of the EOG RMS values and the video offset RMS values

there appears to be a relationship between eye movements and helmet slippage while

under vibration. However, more accurate measurements of the helmet slippage and head

movements are necessary to better understand this relationship.
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Figure 3.6. EOG RMS values comparison to Video offset RMS values.

3.2.4.1 Initial Discussion.

Previous research to understand the impact of the VOR on visual performance in vibration

conditions had relied only on performance measurements, such as reading or aiming errors.

This research indicated an increase in aiming error and acuity decrements (30), as well

as, a rise in reading errors (12) within the 4 to 6 Hz range. Additionally, the literature

suggested that as the vibration frequency increased beyond 6 to 8 Hz, the body would be

more successful at dampening vibration and would decrease the transfer of vibration to the

head (18).

The results of this study confirmed that the 4-6 Hz vibration conditions are the most

destructive to a participant’s ability to maintain appropriate fixation on a stationary target

or a target engaged with a smooth pursuit eye movement. However, previous research had

not distinguished between specific eye tasks, such as a fixating a stationary target versus

tracking a moving target. Of importance was the finding that the VOR effect resulted in

larger amplitude eye movements when fixating on a target viewed with smooth pursuit eye

movements as opposed to fixating on a stationary target. This finding indicates that adding
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eye motion to the task can have a significant impact on the magnitude of eye motion in this

4-6 Hz range. The measured z-axis, or vertical, head amplitude values confirmed that the

vibration in the head was not significantly different between the two tasks. Therefore, this

difference in vertical eye movement amplitude cannot be attributed to differences in head

motion during the two tasks.

The data indicated that the maximum RMS values for head amplitude, as well as eye

movement amplitude occurred in the 4-6 Hz range. However, the peak head acceleration

occurred at 6 Hz, which differed from the eye acceleration, which peaked at 4 Hz. This

observation verified earlier research findings, which indicated that the eye, head and

helmet all vibrate at different frequencies, compounding the difficulty in creating accurate

compensation algorithms (21). This study indicated that further research is needed to

determine if a correlation exists between the head amplitude and eye movement data.

This research needs to include the data of a helmet-mounted accelerometer to verify the

differences in vibration.

3.3 Experiment 2

The first experiment demonstrated that EOG values could be related to the frequency input.

Analysis of the video recording of the eye from the experiment indicated that the helmet

moved with respect to the head while under vibration, indicating helmet slippage should be

analyzed in addition to head movement, as it might affect eye movements.

Previous research indicates eye movements do not have a linear relationship with the

acceleration level(23). For this reason, it was decided that the follow-on experiment should

include multiple acceleration levels. Specifically two different acceleration levels were

employed, including 0.1 and 0.2 g. To determine helmet slippage and head movement,

each participant wore a helmet-mounted display which was equipped with a set of
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accelerometers. Additionally, the participants were fit with a bite bar containing a different

set of accelerometers and EOG leads were applied around the participant’s eyes to permit

recording of eye movement data.

3.3.1 Experimental Methodology.

3.3.1.1 Participants.

Twelve participants between 22-29 years old volunteered to take part in the experiment,

including 11 male participants. The same qualifications for inner ear, eye, and

musculoskeletal system injuries as the first experiment were upheld. One participant

experienced an injury, unrelated to the current study between test sessions, and was not

permitted to continue with the experiment.

3.3.1.2 Vibration Table.

During the second experiment, participants were again seated on the same single-axis

servohydraulic vibration table used during the first experiment. The facility technician ran

the vibration table during the experiment, inputting the proper frequencies and displacement

values necessary to attain the specified acceleration levels.

3.3.1.3 Helmet.

The display designed for the first experiment was able to display the visual tasks to the

participants, but issues with clarity occurred with several participants, indicated the need

for a more adjustable display to accommodate a larger variety of participants.

A custom visor was created to fit into the mounts on the helmet, shown in Figures

3.7 and 3.8. The visor’s main components were two adjustable side brackets and a plate

across the front. The plate attached to a binocular LCD display system that was acquired
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from a pair of Vuzix Wrap 920 augmented reality glasses and provided 640 by 480 pixels

over approximately 31 degree diagonal field of view. The display system had been used

in the first experiment to display simple visual tasks to users, simulating the types of task

accomplished on a HMD. The plate also had a secondary purpose of blocking a majority of

the ambient light, allowing the user to more easily view the display system. The adjustable

sides allowed the user to adjust the distance to the display to improve the visibility of the

display.

Figure 3.7. Modified helmet from the front

The same EOG procedure was followed as the first experiment since it was proved to

be able to provide a consistent measurement of eye movement.

3.3.1.4 Accelerometers.

A triaxial accelerometer pack was used to measure the input acceleration at the floor

in the fore-and-aft (X), lateral (Y), and vertical (Z) directions. The pack consisted of

three-orthogonally-arranged miniature accelerometers (Entran EGAX-25) embedded into

a two-piece plastic disk. Two sets of six miniature accelerometers (Entran EGA 125-10D)
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Figure 3.8. Modified helmet from the side.

were orthogonally-arranged and strategically glued inside of the two-piece plastic mount,

and attached to a bite bar and the top of the helmet. These accelerator packs permitted

the measurement of the translational and rotational movements of the user’s head and

helmet. The bite bar used a custom impression of each participant’s teeth, obtained using

molding clay and a mouthpiece for a tight fit. This custom fit bite bar permitted accurate

accelerometer readings of the participants head motions. The slippage between the head and

helmet motions were calculated by differencing values obtained from the helmet-mounted

and bite bar-mounted accelerometer packs. These slippage values indicate how much the

display moved with respect to the participants’ head.

All acceleration data were collected onto a 48 channel data acquisition system (EME,

Corp), filtered at 250 Hz, and digitized at 1024 samples per second. The EOG and

accelerometer data were collected simultaneously, triggered for the 15 seconds of task

completion at each frequency.
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3.3.2 Experimental Procedure.

Upon arriving, participants completed an informed consent and underwent appropriate

screening procedures. The participants were then seated on the acceleration table and

instrumented as necessary. The instrumentation was then calibrated to insure the proper

acceleration level at each frequency. The participants then trained and completed the first

of two test sessions.

During each test session, the participants first completed an eye movement calibration

without vibration. The calibration required the participants to fixate on a target at a

sequence of five locations, indicating the center and the extremes of target location during

the experiment. The measurements from the calibration period were used to understand

the magnitude of the EOG signals for each participant. The same format for the tasks

was used as the first experiment, but a dot was used as the fixation target to avoid the

potential for multiple fixation points from the first experiment. Upon completing the tasks

at one acceleration level, the instrumentation was removed from the participants; they were

debriefed and permitted to leave. Participants then completed the second test session on

a different day, following the same procedure, only experiencing a different acceleration

level.

The participants were exposed to six different sinusoidal vibration frequencies,

including 0, 2, 4, 6, 8, and 10 Hz. These frequencies were experienced at 0.1 g

(∼0.69 m/s2 rms) peak acceleration level for one test session and 0.2 g (∼1.37 m/s2 rms)

peak acceleration level for the other test session. The order the acceleration level were

experienced by the participants was counterbalanced to avoid any biasing effects. These

vibration levels and their durations were selected in accordance with the current human

exposure guidelines (14), with overall levels indicating a low risk of health effects. The

procedure was reviewed and approved through the Air Force Institutional Review Board

process.
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3.3.3 Data Analysis.

For data analysis of the tracking task, only the sections of the signal where the dot

was moving horizontally were considered. During horizontal tracking, any vertical eye

movements could be attributed to compensating for the vibration. If one of the horizontal

segments had a non-representative eye movement, such as a blink, in the signal, that

segment was not used in calculation. For the fixation task, blinks were segmented out

of the signal, and the remaining signal was used for analysis. A high-pass filter was

created in MATLAB using the filterbuilder function. The stop frequency was 1 Hz, and

the pass frequency was 1.5 Hz, in order to eliminate the effects of drift in the signal, but

retain any effects from the applied frequencies. Then, the signal was normalized using a

value calculated from the calibration task. The normalization value was half the difference

between the 90th percentile value of the EOG signal when the dot was at the top of the

screen and the 10th percentile value when the dot was at the bottom of the screen. The

normalization value estimated the extremes of the eye movement in the EOG signal.

Head and helmet rotational accelerations were calculated using the difference between

the time histories of the two orthogonally placed accelerometers of interest, and dividing

by the moment arm. The rotational displacements of the head and helmet were estimated

using the Fast-Fourier Transform (FFT) of the time history of the accelerometer signal,

dividing by the square of the angular frequency, and multiplying by -1. The inverse FFT

was applied to obtain the estimation of the displacement. The helmet slippage rotational

accelerations and displacements were calculated as the difference between the head and

helmet time histories.

PSD analyses using Welch’s method were conducted on the filtered segments of the

EOG signal and the accelerometer values to compare the applied vibration frequency to

response in the frequency domain. The magnitude of the power of the PSD was converted

to RMS values at each frequency by multiplying the PSD values by the resolution and taking
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the square root. The RMS value at the applied frequency was obtained, and was used in

further analysis to compare the head and helmet motions to the eye movements. The EOG

RMS values for one subject were more than 3 standard deviations from the mean, and were

not included in the analysis.

A repeated measures ANOVA was conducted on the EOG RMS values and the

associated accelerometer RMS values for vertical head acceleration, head and helmet

slippage pitch accelerations, and head and helmet slippage pitch angles. The LSD

comparison on within measures was completed to determine the significant difference

between the levels. When Mauchly’s test for sphericity failed, the Greenhouse-Geisser

correction was applied to the analysis. A significance level of 0.05 was used for this

analysis.

3.3.4 Results.

The effect of frequency (F(2.097, 18.875)=11.64; p≤0.000) was significant for the EOG

RMS values. The effect of task (F(1, 9)=0.385; p=0.550), acceleration level (F(1, 9)=2.182;

p=0.174), and the interaction terms on the EOG RMS values were not significant. The

average EOG RMS values for the fixation task, Task A, and the tracking task, Task B, are

shown in Figure 3.9. A pairwise comparison between the frequencies shows the EOG RMS

values at 4 Hz are significantly larger than the values at 2, 8 and 10 Hz. The EOG RMS

values at 4 and 6 Hz are approaching significantly different, with a p-value of 0.065.

Comparing task, frequency and acceleration level of the vertical head acceleration

RMS values using repeated measures analysis indicated that the effects of frequency

(F(2.195, 19.758)=34.774; p≤0.000), acceleration level (F(1, 9)=380.664; p≤0.000), and

the interaction between frequency and acceleration level (F(4, 36)=15.003; p≤0.000) had a

significant effect on the RMS values. The effects of task (F(1, 9)=1.325; p=0.279), and the

additional interactions were not significant. The vertical head acceleration RMS values are
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Figure 3.9. Average EOG RMS values for each task and each acceleration level at the

corresponding frequency.

shown in Figure 3.10. ANOVAs on the change in frequency, separated by acceleration level

determined that for 0.1 g, 6 Hz was significantly larger than any other frequency. For 0.2 g,

4 Hz was significantly larger than all other frequencies. Six Hz was significantly different

from all other frequencies.

The effects of frequency (F(1.476, 13.284)=14.139; p=0.001) and acceleration level

(F(1, 9)=5.106; p=0.050) are significant for the head pitch acceleration RMS values. The

effects of task (F(1, 9)=1.513; p=0.250) and all interaction terms were not significant. The

head pitch acceleration RMS at 2 Hz was significantly less than for all other frequencies,

and 4 and 6 Hz were greater than all other frequencies. The head pitch acceleration RMS

values are shown in Figure 3.11.

The helmet slippage pitch acceleration RMS values are shown in Figure 3.12, the effect

of frequency is significant (F(1.739, 15.652)=6.675; p=0.010), while, the effects of task
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Figure 3.10. Average vertical head acceleration RMS values for each task and each

acceleration level at the corresponding frequency.

(F(1, 9)=0.279; p=0.610), acceleration level (F(1, 9)=2.637; p=0.139) and all interaction

terms were not significant. For both tasks and acceleration levels, 2 Hz is significantly less

than all other frequencies.

For the head pitch angle RMS values, frequency (F(1.746, 15.718)=53.429; p≤0.000),

acceleration level (F(1, 9)=35.261; p¡=0.000), task and frequency interaction (F(2.348,

21.131)=4.473; p=0.020), and the interaction between frequency and acceleration (F(2.240,

20.162)=9.902; p=0.001) are significant. Task (F(1, 9)=0.000; p=0.989) and the remaining

interactions are not significant. Separating the RMS values by task, for the fixation task,

frequency (F(1.88, 16.89)=45.86; p≤0.000), acceleration (F(1, 9)=36.70; p≤0.000) and the

interaction (F(2.39, 21.55)=7.92; p=0.002) are significant. ANOVAs on each acceleration

level indicate for both 0.1 g and 0.2 g, the RMS values at 2 and 4 Hz are significantly

larger than the RMS values at the other frequencies. For the tracking task, frequency

(F(1.759, 15.831)=45.266; p≤0.000), acceleration level (F(1, 9)=24.833; p=0.001), and
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Figure 3.11. Average head pitch acceleration RMS values for each task and each

acceleration level at the corresponding frequency.

the interaction term (F(1.869, 16.819)=8.159; p=0.004) are all significant. At both 0.1 g

and 0.2 g, 8 and 10 Hz are significantly less than the other frequencies. At 0.2 g, 4 Hz is

significantly larger than all other frequencies. Similar results were found from the ANOVAs

conducted on the interaction of frequency and acceleration level. The head pitch angle RMS

values are shown in Figure 3.13.

Frequency (F(1.804, 16.240)=26.744; p≤0.000) and acceleration level (1, 9)=17.246;

p=0.002) are significant for the helmet slippage pitch angle RMS values. Task (F(1,

9)=0.152; p=0.706) and the interactions are not significant. A pairwise comparison

demonstrates that the RMS helmet slippage pitch angle at 2 Hz is significantly larger than

all other frequencies. The helmet slippage pitch angle RMS values are shown in Figure

3.14.
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Figure 3.12. Average helmet slippage pitch acceleration RMS values for each task and

each acceleration level at the corresponding frequency.

Figure 3.13. Average head pitch angle RMS values for each task and each acceleration

level at the corresponding frequency.
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Figure 3.14. Average helmet slippage pitch angle RMS values for each task and each

acceleration level at the corresponding frequency.
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3.4 Discussion

As the accelerometer values between the two visual tasks are similar for all conditions,

it is expected that the vestibular system received approximately the same signals, and the

VOR should respond in a similar fashion, regardless of task as was observed in this second

experiment. The change in the EOG RMS values appears higher at the higher acceleration

level, however the acceleration level is not significantly different. As only the change in

frequency had an effect on the EOG RMS values, while all of the accelerometer values,

except helmet slippage pitch acceleration, are significantly affected by the other factors,

this indicates that the eye is not as affected by the changes in vibration amplitude or that the

noise level is larger for the high acceleration levels.

The variables that have the strongest relationship with the EOG RMS values

were determined using a stepwise regression. The frequency, acceleration level, and

accelerometer values were included in the analysis. Head pitch acceleration and helmet

slippage pitch acceleration were determined to be the significant factors to predict the EOG

RMS values for the fixation task. The estimated regression function has an adjusted R2 of

0.234 and is:

FixationEOG = 0.0973+0.0236·HeadPitchAcceleration−0.0235·HelmetS lippagePitchAcceleration

(3.1)

Using these two input variables to create a regression function to estimate the EOG

measurements from the tracking task results in the function:

TrackingEOG = 0.0909+0.0260·HeadPitchAcceleration−0.0229·HelmetS lippagePitchAcceleration

(3.2)

This function has an adjusted R2 of 0.285. As there was not a significant effect from

task, it was expected that the estimated regression functions would be similar. Although

Equations 3.1 and 3.2 are not able to be used to directly compute eye movements, they
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are useful to understand the factors that have a relationship with the eye movements.

Understanding what vibration induced head and helmet movements cause eye movements

is a crucial aspect in this area of research, and knowing the relationship between head pitch

acceleration, helmet slippage pitch acceleration, and eye movements could greatly benefit

future studies.

The EOG RMS values for Experiments 1 and 2 peaked for both visual tasks at 4 Hz.

Since Experiment 1 used a target acceleration level of 0.1 g, the 0.2 g RMS values from

Experiment 2 are not comparable. At 0.1 g for both tasks, the EOG RMS values at 4 and 6

Hz are not significantly different, but with greater number of participants, more significant

results could occur. The EOG signal contains a large amount of noise that results in large

variabilities in EOG RMS values. The RMS values from both experiments support the

documented blur experienced in HMDs while under vibration, especially in the 4-6 Hz

range (18).

The accelerometer RMS values between Experiments 1 and 2 demonstrate similar

results for both tasks at the 0.1 g acceleration level, peaking at 4 Hz.

3.5 Conclusion

There is not a significant difference between the eye movements depending on the visual

task being completed. This does not support the results of the research applying filters

to counteract the vibration, which found that a single filter was not capable of effectively

stabilizing the image displayed for different visual tasks. However the peak EOG RMS

values at 4 and 6 Hz support the reports of low frequency vibrations affecting visual

performance, especially in the 4-6 Hz range. As the difference between the EOG RMS

values at 4 and 6 Hz approaches significance, the relationship between them could be further

investigated with greater power by increasing the number of participants.
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The difference in the vertical acceleration RMS values as the acceleration level

changes demonstrates a non-linear relationship between body resonance and the vibration

level applied, supporting the work by Smith, Mosher, et al. (23). As only two acceleration

levels were tested, further research would be able to compare how body resonance is

affected by acceleration level changes.

The similar results for the estimated regression functions for the EOG RMS values for

the fixation task and the tracking task demonstrates that there is a relationship between

the head pitch acceleration, the helmet slippage pitch acceleration and the EOG RMS

values. Although EOG provides a consistent method to measure eye movements during

vibration, the signal includes subject-specific noise and apparent drift, making it difficult

to determine accurate eye location. Accurate video-based eye tracking demands that the

camera remains relatively stationary with respect to the head, or at least avoid rapid changes

in head location. The microcamera attached to the helmet suffered from the helmet slippage

movements which affected the location of the eye on the video, as well as the changes in

head shape between the participants which affected how clear an image of the eye was

recorded. A more robust design for the camera, a method to eliminate helmet slippage, or

a more effective method to analyzing EOG signals is necessary to determine absolute eye

position.
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IV. Conclusion

4.1 Chapter Overview

This chapter provides an overall summary of the research and results covered in this thesis.

It recaps the significant results from a previous study to a human subject experiment that

further expanded research into human head, eye, and helmet motion in the presence of

vibration. Additionally, the military and commercial importance of the research and results

from the experiment are described. Finally, suggestions on future work that would further

knowledge in this area of research are outlined and justified.

4.2 Summary of Results

Analyzing the video data recorded from previous research and comparing these results to

the VOR effects at different frequencies indicated that the video, and therefore the display,

was moving with respect to the participant’s head. This was caused by the movement of

the helmet, which is allowed for sizing and comfort issues. Comparing each video frame

to a standard image taken from a non-vibration period provides an estimate of how much

the camera moved while under vibration. Comparing the RMS values of the video to the

EOG RMS values indicated that a relationship between the helmet motion and the eye

movements could possibly exist. As a result, a human-subjects experiment was designed to

probe this relationship as well as to extend the experimental conditions to include multiple

accelerations.

The effectiveness of using EOG values to analyze eye movements was found to be

difficult since the EOG signal contains substantial noise and drift. In addition, EOG

signals are characteristic for each individual, making it difficult to compare signals between
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subjects. Overall, EOG signals are able to indicate general movements, but do not always

indicate accurate eye position. By applying a 0.5 second moving average filter, the low

frequency drift was removed without affecting the movements associated with the vibration

input. Normalizing the data attempted to scale the eye movements so the signal could be

compared between subjects.

Analysis of the EOG RMS values in this study demonstrated that only frequency

affects eye movements. The fact that task did not change the accelerometer values indicates

that the inner ear canals received the same signals, which would induce the same VOR

response. Any change in the eye movements from the fixation task to the tracking task

can possibly be attributed to either the suppression of the VOR, or to the combination

of the pursuit response and the VOR movements acting in coordination with each other.

The EOG RMS values for both tasks experienced peak values at 4 Hz, which was not

significantly different from 6 Hz. These results coincide with the reported degradation in

visual performance during vibrations between 4 and 6 Hz (18).

The vertical head acceleration RMS values describe how the head moves up and down

while undergoing vibration. The similarity of the values across tasks indicates that the

body responds the same when the same vibration conditions are applied. However, the

significant difference between the RMS values at different acceleration levels demonstrates

that the body’s response changes. At 0.1 g, the peak vertical head acceleration occurs at 6

Hz, while at 0.2 g, the peak acceleration occurs at 4 Hz. These values could help to explain

the conflicting results from previous research that attempt to describe the body’s response

at different vibration levels (22; 12). The body’s response appears to change as a function

of acceleration level input, meaning previous research that used different vibration levels

would obtain differing results.

Using a stepwise regression analysis, the head pitch acceleration RMS and helmet

slippage pitch acceleration RMS values were determined to have a significant relationship
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with the EOG RMS values for the fixation task. The relationship between the head pitch

acceleration values and the EOG values was expected based on the VOR response to

rotational motions perceived in the inner ear canals. The helmet slippage pitch angle

RMS values were expected to have a more significant relationship than was shown in past

literature based on the results of the video analysis from the previous study. This analysis

confirms that the blur that is present in HMDs in vibratory environments likely stems from

a combination of vestibularly-induced eye movements and the movement of the helmet-

mounted display.

4.3 Implications

Understanding how the eyes move at the different vibration conditions despite the task

being completed is the most important focus in this area of research currently. As indicated

by the similar estimated regression functions developed, there are similarities in how the

eye moves regardless of task. Validating the recorded experiences of HMD users that

experience the largest vision decrements in the 4-6 Hz regime is an important result of

this research. Although the regime was noted, the reasoning behind the vision decrements

could only be theorized, but by understanding that the eye movements were largest at those

frequencies, a more complete profile of the eye’s response can be used to compensate for

vibrations. Although the results that eye movements increase when the acceleration level

increases were expected based on the larger displacement values necessary to reach the

higher acceleration level, the ability to determine how much more the eyes moved at the

larger acceleration level is essential for compensation algorithms.

In spite of the low adjusted R2 values for the estimated regression functions, knowing

which values indicate eye movement focuses future research. Simply the development

of a function that is able to describe eye movement while under vibration is a positive
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conclusion. Although more research into accurately decomposing EOG signals into eye

movements is necessary to be able to use the time history of the signal, the estimated

regression functions provide a starting point for understanding the relationship between

the head, helmet, and eye movements.

4.4 Recommendations for Future Work

The new design for the display attachment placed the display on the inside of the

attachment, unlike the previous design. While this allowed for participants to place the

display in a position more similar to the original purpose of the display, it also limited

the visibility of the camera intended to record the eye throughout the experiment. Various

adjustments might improve the overall design of the helmet attachment. Compromising

between the original design and the one used for this research, pulling the display away

from the eyes allows for improved angles for the camera may permit higher quality video

of the eye. This could potentially lead towards the ability to use the video for eye tracking

during the tasks. Another improvement is the addition of rotation of the display in and out of

participant’s line of sight. Currently the rotation about the attachments to the helmet and the

adjustable sides of the attachment add flexibility in the display to conform to the individual

fit of each participant’s face, but additional flexibility would improve the participants’

ability to see the stimuli displayed, resulting in more accurate eye movement measurements.

In addition, developing a method to minimize the amount of helmet slippage, such as an

oxygen mask, would increase the understanding of the relationship between eye movements

and helmet slippage.

The fixation task demonstrates a simple version of the type of task HMD users

commonly complete. However, in a realistic environment, information is displayed on

the entire display. The change in eye movements by fixating on off-center positions would
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contribute to understanding the compensation methods necessary to counteract vibration

effects.

Previous research recorded that larger head motions occurred as a result of vibration in

off-axis head orientations. These larger head motions also resulted in large helmet slippage

values (25). Based on the results of this research, alternate head positions should result in

larger eye movements. As HMD users are able to move their head in all directions and

the information displayed will still be available, analysis of how head orientation affects

eye movements while under vibration is crucial to formulating a complete picture of eye

movements to compensate for them.

As discussed earlier, the EOG signals are not easily analyzed and compared between

participants. Each participant’s EOG signal has individual features, noise levels, and clarity

of characteristics such as blinks, all of which results in large variances in the RMS values.

Understanding the reasons behind the differences in the EOG signals between the subjects

could improve data collection in the future. Further research is necessary to more effectively

analyze EOG signals so subjects can be compared, however basic analysis is possible

currently.

4.5 Final Thoughts

The research conducted delves into a crucial area for future HMD use, analyzing the

components that must be considered to effectively compensate for vibrations. The results

help support various other findings, while also expanding into novel areas that have not

been covered previously. This research demonstrated that eye movements peak in the

expected 4-6 Hz range, as well as the effect acceleration level and task have on the eye

movements. The military and commercial applications of HMDs are expanding, and quality

of imaging is a determining factor of the use of certain technologies over others. The ability
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to present legible information regardless of vibration conditions would increase the amount

of information able to be displayed, potentially increasing the user’s performance.
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Screening Checklist

Subject ID:

Age:

Gender:

Neck Measurement (in):

Forehead Measurement (in):

Height:

(Women Only) Are you pregnant or suspect to be pregnant?     YES/NO

(Women Only) Do you have breast implants?      YES/NO

Do you wear corrective lenses (glasses/contact lenses)?    YES/NO

Have you had corrective eye surgery (PRK/LASIK)?        YES/NO

Have you been diagnosed or treated for any eye injuries or disease(s)? YES/NO

Have you been diagnosed or treated for any inner ear injuries or disease(s)?      YES/NO

Have you experienced any inner ear problems in the past month (vertigo, dizziness, infection)?  
YES/NO

Have you consumed alcohol in the past 24 hours?       YES/NO

Are you currently experiencing or in the past month have experienced:

…cold or allergy congestion symptoms? YES/NO
… pain in the musculoskeletal system especially in the back or neck?    YES/NO
… Numbness/Tingling/Weakness in Extremities? YES/NO
… Constant Headaches? YES/NO
… Shooting Pain into Arms/Hands/Legs/Feet? YES/NO

If any above are YES, explain below:

Date reviewed:
Signature of research monitor:
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An Investigation and Analysis of the Vestibulo-ocular Reflex (VOR) in a Vibration 
Environment

FWR20130014H, Version 3.00
AFRL IRB Approval Valid from 15 Oct 2013 to 14 Oct 2014

INFORMATION PROTECTED BY THE PRIVACY ACT OF 1974

Informed Consent Document
for

An Investigation and Analysis of the Vestibulo-ocular Reflex (VOR) in a Vibration 
Environment

AFIT/ENV, Wright-Patterson AFB

Principal Investigator: Michael E. Miller/Ph.D/Assistant Professor, AFIT/ENV, (937) 
255-3636 x4651, Michael.Miller@afit.edu

Associate Investigators: Kalyn Tung/2LT/Master’s Student, AFIT/ENV, (937) 255-3636
x4651, Kalyn.Tung@afit.edu    

Suzanne D. Smith, PhD, Senior Biomedical Engineer, 
AFRL/RHCP, DSN 785-9331, Suzanne.smith@wpafb.af.mil

Research Monitor: Capt Dawn M. Russell, USAF, MPAS, PA-C, AFMC, 711 
HPW/RHCP, DSN 798-3724 dawn.russell@wpafb.af.mil

Medical Observers: TSgt Bethany L. Repp, USAF, AFMC, 711 HPW/RHCP, DSN 
798-3702 Bethany.repp@wpafb.af.mil

SSgt Andrew J. Jimenez, USAF, AFMC, 711 HPW/RHCP, DSN
798-3147 Andrew.jimenez@wpafb.af.mil

SSgt Misty A. Hobbs, USAF, AFMC, 711 HPW/RHCP, DSN 798-
3146 misty. hobbs@wpafb.af.mil

1. Nature and purpose: You have been offered the opportunity to participate in the research 
study entitled “An Investigation and Analysis of the Vestibulo-Ocular Reflex (VOR) in a 
Vibration Environment” research study. Your participation will occur sometime between 1
Nov 2013 and 31 Dec 2013, at the Single-Axis Servohydraulic Vibration Facility located in 
Building 824, Area B, Wright-Patterson AFB.  

The purpose of this research is to measure eye movement associated with the VOR during 
low frequency vibration while performing various targeting tasks using a Helmet Mounted 
Display (HMD). This research seeks to provide a greater understanding of the effects of 
vibration on eye movement and visual performance degradation when using HMDs, and to 
generate baseline data for developing effective compensation techniques to mitigate this 
degradation.  
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The time requirement for each volunteer subject is anticipated to be a total of 2 visits of 
approximately 40 minutes each.  A total of approximately 15-20 subjects will be enrolled in 
this study.

2. Experimental procedures: You will wear ABUs during the test sessions. You will be 
escorted onto the Single-Axis vibration table, seated in the seating system, and loosely 
restrained.  There will be a rubber pad mounted onto the seat back cushion.  The pad has 
miniature sensors embedded in them for monitoring the vibration that enters your body.  A 
pad is also installed on the seat pan. You will also wear a helmet with a miniature speaker 
located in the ear cuff for hearing commands from the performance task.  The helmet will be 
mounted with a camera, an infrared light source and a video display that will be used for 
performance tasks.

The low-level vibration exposure signals will be recreated on the Single-Axis vibration table.  
The selected signal will vary between 0-10 Hz.  This level of vibration is akin to what a 
subject would encounter in an everyday, real-world scenario, such as traveling in a car over a 
rough or unpaved road, or when encountering brief, minor turbulence in a commercial 
aircraft. 

Each test session will consist of three different tasks that you will perform one at a time. The 
tasks include a single-point fixation task, a smooth tracking of a target task, and a tracking of 
a jumping target task. You will be asked to perform each task, not necessarily in the order 
described, one after another with a two-minute break between. The tasks are expected to take 
approximately 3 minutes each for a total of 9 minutes of task performance. You will be 
instructed on what to do for each task before the session begins and reminded of what the 
upcoming task will be during each break.

Representation of Tasks

(A) Fixation Task     (B) Smooth Tracking Task        (C) Jumping Target

During the formal test session, setup will take approximately 10-15 minutes. When setup is 
complete you will be instructed of the order of your tasks and reminded what the first task 
will be and what to do. You will then be exposed to low-level vibrations increasing in 
specific increments over a determined range or to vibrations varying by a specific increment 
over a determined range. You will be given a 20 second acclimation period for each interval 
and then you will be prompted to begin the task and continue the task for an additional 15 
seconds at that specific frequency interval. The vibration will then increase or decrease to the 
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next interval depending on the session and the same 20 second acclimation period will be 
given followed by 15 seconds of performing the task. This will occur a total of 6 times 
including one interval at 0 Hz, or no vibration. You will be given a two-minute break, where 
you are to remain seated and lightly restrained. You will be reminded on what the next task 
will be and how to perform it. The process will start over again and will be repeated 
identically for the three tasks. When all the tasks have been completed, the session will end 
and you will be asked to complete a post-test questionnaire.  You will be observed for any 
signs of dizziness or other side effects, prior to exiting the facility. There will only be one 
formal test session per day.

3. Discomfort and risks: Due to the very short duration of exposure to the vibration signals 
the probability is low that you will experience any discomfort. However, if you do, you may 
have feelings of annoyance and discomfort in the thighs, buttocks, back, and neck, with some 
muscle aches. You can stop the test at any time by notifying the test conductor.  You should 
discontinue testing if you experience excessive discomfort or dizziness. 

4. Precautions for female subjects or subjects who are or may become pregnant during 
the course of this study: If you are a female, you must read this section prior to signing the 
consent form.  There is little information available concerning the effects of vibration on 
pregnant females.  However, female military members in the USAF are exposed to 
operational environments that include short and prolonged periods of vibration.  Therefore, 
there is a real need to assess the effects of vibration on females for the improvement of 
exposure standards and equipment design criteria.  The following are specific precautions 
that apply to female subjects:

a. Pregnancy - There are no data with which to evaluate the risk to a developing fetus 
(spontaneous abortion or fetal abnormalities) of exposure to vibration.  Pregnant females 
cannot participate in vibration studies, no matter what the level of the exposure.  
Pregnancy will be determined by pregnancy tests administered and read by a trained 
medical observer prior to being cleared for testing.  It is appropriate to utilize an effective 
contraceptive technique prior to, and for the duration of, vibration exposures as a human 
subject.  If you become pregnant or feel you might be pregnant, contact your medical 
provider and the study investigator or research monitor.

b. Contraceptives - The use of oral contraceptives in the general population has been 
implicated in an observed increased incidence of medical problems such as inflammation 
of the large veins in the legs and pelvis with formation of blood clots.  These clots may 
be dislodged and travel to the lungs with a potentially fatal outcome.  Current medical 
studies examine these problems in a normal environment.  Medical studies have also 
suggested that smoking and the use of oral contraceptives place the female subject at a 
greater risk.  No studies have been done to examine the influence, if any, of vibratory 
motion on the use of oral or intrauterine contraceptives.

c. Ovarian Abnormalities - The ovary is subject to cystic enlargement and other conditions 
that may occur with or without symptoms.  There is a possibility that prolonged 
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exposures to vibration could increase the normal risk that such an enlarged cyst may burst 
or that the ovary may twist about its support, cutting off the blood supply.  This situation 
would possibly require major surgery to correct the condition with the attendant risks of 
loss of the involved ovary, bleeding, infection, or death.

d. Menstrual Flow - Prolonged exposures to vibration could theoretically result in 
menstrual flow alterations.  To date, female subjects at this facility have not reported any 
unusual problems, nor, to our knowledge, are any reported in the literature.

e. Breast Support - The forces experienced during vibration exposure under this protocol 
are relatively low.  For your comfort, it is advised that appropriate breast support be used, 
similar to what might be used during exercise.  Females with breast implants will not be 
allowed to participate in this study.

5. Benefits: You are not expected to benefit directly from participation in this research study, 
but a benefit to the Air Force is expected through an increased understanding of the effects of 
operational vibration on visual performance in these military flight environments.  

6. Compensation: If you are active duty military you will receive your normal active duty pay.

7. Alternatives:  Your alternative is to choose not to participate in this study.  Refusal to 
participate will involve no penalty or loss of benefits to which you are otherwise entitled.  
You may discontinue participation at any time without penalty or loss of benefits to which 
you are otherwise entitled. Notify one of the investigators of this study to discontinue.

8. Entitlements and confidentiality:

a. Records of your participation in this study may only be disclosed according to federal 
law, including the Federal Privacy Act, 5 U.S.C. 552a, and its implementing regulations.  
Complete confidentiality cannot be promised, in particular for military personnel, 
whose health or fitness for duty information may be required to be reported to appropriate 
medical or command authorities. If such information is to be reported, you will be 
informed of what is being reported and the reason for the report.

b. You understand your entitlements to medical and dental care and/or compensation in the 
event of injury are governed by federal laws and regulations, and that if you desire further 
information you may contact the base legal office, 88 ABW/JA, DSN 787-6142.  You 
may contact the medical consultant/ research monitor (Capt. Dawn Russell).

c. If an unanticipated event (medical misadventure) occurs during your participation in this 
study, you will be informed.  If you are not competent at the time to understand the 
nature of the event, such information will be brought to the attention of your next of kin.
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Next of kin or emergency contact information:

Name                                                                             Phone#_________________

d. The decision to participate in this research is completely voluntary on your part.  No one 
may coerce or intimidate you into participating in this program.  You are participating 
because you want to. Dr. Michael Miller, or an associate, has adequately answered any 
and all questions you have about this study, your participation, and the procedures 
involved. Dr. Michael Miller can be reached at (937) 255-3636 x4651. Dr. Michael 
Miller or an associate will be available to answer any questions concerning procedures 
throughout this study.  If significant new findings develop during the course of this 
research, which may relate to your decision to continue participation, you will be 
informed.  Refusal to participate will involve no penalty or loss of benefits to which you 
are otherwise entitled.  You may discontinue participation at any time without penalty or 
loss of benefits to which you are otherwise entitled. Notify one of the investigators of 
this study to discontinue.  The investigator or research monitor of this study may 
terminate your participation in this study if she or he feels this to be in your best interest.  
If you have any questions or concerns about your participation in this study or your rights 
as a research subject, please contact Col William Butler at DSN 986 – 5436 or 
william.butler2@wpafb.af.mil.

e. Your participation in this study may be photographed, filmed or audio/videotaped.  These 
recordings will be archived on CD or similar media, as well as on a limited-access 
government computer.  The the data acquired during your participation will be 
maintained indefinitely and may become permanent records in the Air Force 
Collaborative Biomechanics Data Network. Storage of the data is required to permit 
further data analysis and to provide a database against which future algorithms for 
overcoming image blur on helmet-mounted displays can be assessed.  You consent to the 
use of these media and data for training, data collection, publication, and presentation 
purposes. Any release of records of your participation in this study may only be disclosed 
according to federal law, including the Federal Privacy Act, 55 U.S.C. 552a, and its 
implementing regulations.  This means personal information will not be released to 
unauthorized source without your permission.  These recordings and data may be used for 
presentation or publication, with your signed permission.  They will be stored in a locked 
cabinet in a room that is locked when not occupied.  Only the investigators of this study 
will have access to these media.  

f. YOU FULLY UNDERSTAND THAT YOU ARE MAKING A DECISION WHETHER 
OR NOT TO PARTICIPATE.  YOUR SIGNATURE INDICATES THAT YOU HAVE 
DECIDED TO PARTICIPATE HAVING READ THE INFORMATION PROVIDED 
ABOVE.

Volunteer Signature_________________________________________Date_______________
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Volunteer Name (printed)_________________________________________

Advising Investigator Signature _______________________________Date_______________

Investigator Name (printed)_________________________________________

Witness Signature___________________________________________Date_______________

Witness Name (printed)_________________________________________

We may wish to present some of the video/audio recordings from this study at scientific 
conventions or use photographs in journal publications.  If you consent to the use of your image 
for publication or presentation in a scientific or academic setting, please sign below.

Volunteer Signature_________________________________________Date_______________

Privacy Act Statement

Authority:  We are requesting disclosure of personal information, to include your Social 
Security Number. Researchers are authorized to collect personal information (including social 
security numbers) on research subjects under The Privacy Act-5 USC 552a, 10 USC 55, 10 USC 
8013, 32 CFR Part 219, 45 CFR Part 46, and EO 9397, November 1943 (SSN).
Purpose:  It is possible that latent risks or injuries inherent in this experiment will not be 
discovered until some time in the future.  The purpose of collecting this information is to aid 
researchers in locating you at a future date if further disclosures are appropriate.
Routine Uses: Information (including name and SSN) may be furnished to Federal, State and 
local agencies for any uses published by the Air Force in the Federal Register, 52 FR 16431, to 
include, furtherance of the research involved with this study and to provide medical care.
Disclosure:  Disclosure of the requested information is voluntary.   No adverse action
whatsoever will be taken against you, and no privilege will be denied you based on the fact you 
do not disclose this information.  However, your participation in this study may be impacted by a 
refusal to provide this information.
__________________________________________
ICD Distribution: Original filed with protocol records by PI; copy 1, subjec
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Subject #: __________

Session #: __________

Date:______________

Acceleration Level - 0.1 g 0.2 g

Video ON

Run Freq 
(Hz) Disp Task EOG Data Accel Data Video Data

1 0 Calib
2 0 A
3 2 A
4 4 A
5 6 A
6 8 A
7 10 A

TWO MINUTE BREAK
8 0 B
9 2 B

10 4 B
11 6 B
12 8 B
13 10 B

TWO MINUTE BREAK
14 0 C
15 2 C
16 4 C
17 6 C
18 8 C
19 10 C

Video OFF
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Post-Test Questionnaire

Subject ID:

Session #: 

HEALTH

Are you experiencing any vestibular issues (dizziness, disorientation, nausea)? YES / NO

Are you currently experiencing:

… pain in the musculoskeletal system especially in the back or neck?    YES / NO
… Numbness/Tingling/Weakness in Extremities? YES / NO
… Headaches? YES / NO
… Shooting Pain into Arms/Hands/Legs/Feet? YES / NO

If any are YES, please report immediately to an investigator and/or medical monitor

TEST

How well did the helmet fit? LOOSE / FINE / TIGHT

Next to each of the three tasks RATE from 1-10 (1 being easy, 10 being very difficult), the 
difficulty of the task. 

Task A (Single Target Fixation): 

Task B (Smooth Target Tracking): 

Task C (Jumping Target):

Also, in the space provided, please write your overall impression of each of the tasks (what made 
it difficult, easy, boring, etc).

Task A (Single Target Fixation):

Task B (Smooth Target Tracking): 

Task C (Jumping Target):



List in order from GREATEST to LEAST, the amount of vibration you experienced in each of 
these body parts? (Head, Upper Back/Chest, Lower Back/Abdomen, Buttocks, Upper Leg, 
Lower Legs/Feet)

Finally, please provide your overall thoughts/impressions of this experimental session. Please be as 
detailed as possible.

Amount of 
Vibration 

Experienced
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Figure E.1. Peak frequency from PSD analysis with corresponding input frequency.
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Figure I.1. Inputs into the filterbuilder function in MATLAB to create the high pass

filter used in the EOG signal analysis.

94



Figure I.2. Filter response in the frequency domain of high pass filter created in

MATLAB.
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5. Objective 
 
The objective of this study is to measure eye movement associated with the Vestibulo-Ocular 
Reflex (VOR) during low frequency vibration while performing various targeting tasks using 
a Helmet Mounted Display (HMD).  The vibration will be generated in the vertical direction 
between 0 and 10 Hz at 0.1 g peak (0.64 m/s2 rms) and 0.2 g peak (1.387 m/s2 rms) over 
multiple test sessions.  Head and helmet translation and rotation will be measured and 
compared to the associated eye movement.    This research seeks to provide a greater 
understanding of the effects of vibration on eye movement and visual performance 
degradation when using HMDs, and to generate baseline data for developing effective 
compensation techniques to mitigate this degradation.   

 
 
6. Background 

 
Forty years of innovations have produced Helmet-Mounted Displays (HMDs) with higher 
resolution, greater readability in daylight conditions and with color displays. HMDs have 
been successfully integrated into the cockpits of fighter and attack aircraft, which has 
allowed for better design within the cockpit.  More importantly, HMDs provide the ability to 
track and destroy targets off-boresight, minimizing the need for large head movements while 
trying to control the aircraft (Geiselman and Havig, 2010). Studies have also found that 
HMD’s increase mobility because of the advantage of having critical data collimated for 
viewing wherever the head may be located during a task. This constant availability of data 
has been shown to increase operator situational awareness (Velger, 1998) and is central to the 
human interface for future aircraft, including the Joint Strike Fighter.  While HMDs have 
provided positive improvements in aircrew performance, there are still many issues regarding 
symbology, color, and virtual design.   Gibb notes that issues with visual clutter, attentional 
capture, and inattention blindness that can occur from using a HUD are also issues when 
using HMDs (Gibb, 2010). Another key factor in degradation of performance when using 
HMDs, and often cited in HMD research, is vibration and the associated effects of the VOR 
(Rash, et al, 2009). 
 
The human body is physically sensitive to vibration, including the more severe exposures 
generated by military aircraft.  Numerous studies have established that whole-body resonance 
occurs within the frequency range of 4 and 8 Hz during exposure to vertical vibration (ISO 
2631-1:  1997).  Research has shown that the transmission of vibration in the vicinity of 
resonance also produces relatively high vertical pitch motions of the head (Paddan and 
Griffin, 1987). Head translational and rotational transmissibilities are generally greatest 
between 0-10 Hz, while most vibration occurring at higher frequencies beyond whole-body 
resonance (> 10 Hz) is typically dampened before reaching the head. Head pitch magnitude 
occurs most severely (> 12 ms-2) between 4-8 Hz as a result of the forces which occur during 
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resonance (Smith, et al, 2007). The focus of this study will be to understand the effects of 
vibration on HMD use in this critical 0-10 Hz regime.  
 
Studies have found a degrading effect of vibration in terms of visual and task performance. 
When subjects seated in a vibrating helicopter seat were asked to read from a display, reading 
performance was most sensitive between 5-11 Hz resulting in up to 20% error rates for the 
average human subject (Lewis & Griffin, 1980). A separate study in which participants were 
subject to display-only, participant-only, and both display-participant vibration, the reading 
performance of the display-only vibration test rated significantly worse than the other two 
(Moseley & Griffin, 1987). These vibration effects also extended to more complex tasks 
associated with military operations.  Early vibration studies found that the errors associated 
with the tracking of a target with both the eyes and the head increased nearly linearly with 
increased vibration amplitude (Shoenberger, 1972). In general, the highest or most severe 
visual performance degradation occurs at frequencies in which there is the highest vibration 
transmission to the head. While various research studies have demonstrated that the 
frequency range of the most severe performance degradation is 4-6 Hz, at a magnitude of 1 
m/s2 or .1 g, this research has also shown that visual performance can be adversely impacted 
at higher frequencies up to 20 Hz (Rash, 2009; Velger, 1998; Griffin, 1990) 
 
The main culprit for the degradation of visual acuity and thus task performance due to 
vibration is the eye and the associated motions caused by vibration. The human eye generally 
moves in fast saccadic movements between relatively stable fixation points.  Once fixated on 
a point, the human eye then time integrates information from the scene to obtain information. 
Therefore eye movements generally consist of a sequence of fixed movements, each 
movement followed by a stationary interval during which the eye focuses on a point of 
interest. An alternate behavior occurs when a user is tracking a moving object such as a 
finger in front of their face or an enemy aircraft, during these events, the eye moves in 
smooth pursuit, often referred to as fixation reflex. During these eye movements, the eye is 
fixated on an object of interest and follows this object in space, typically without the need for 
any head movement. However, for fast moving objects, smooth pursuit eye movements can 
be coordinated with slow head movements to permit the object to be tracked over large 
distances.  Importantly for either type of eye movement, the eye time integrates the 
information from the scene, permitting the object of interest to be imaged onto the retina and 
captured at a high signal to noise ratio.   
 
When head movement, such as that caused by vibration, is introduced to the visual system, 
the eye responds with a reaction known as the vestibulo-ocular reflex (VOR). The VOR 
occurs when the semicircular canals in the ear detect head motion, sending a signal to the eye 
muscle which induces the eye to move in the direction opposite and at the same magnitude as 
those movements of the head.  This reflex allows whatever image is being focused on to 
remain in the center of the retina, facilitating the integration of information from the image. 
This reflex is most noticeable when doing high-impact activities such as running or jumping. 
During these activities, the VOR allows the world around us to be stabilized in space by 
moving our eyes to adjust for head motion.  
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The VOR however assumes that our natural world is stationary and we move within the 
world reference frame.  Therefore, when visual information is provided on an HMD that 
moves with the head, this VOR response becomes inappropriate as the image is stabilized 
with respect to the head.  Since the VOR causes the eye to move to compensate for head 
movement, this compensatory eye movement results in relative motion of the display to the 
eye.  This movement is similar to the motion that would occur if a person were sitting still in 
a chair and attempting to read a display in front of them that was vibrating, which previously 
stated research has indicated causes significant performance degradation.   

 
Another complicating factor is that it cannot be assumed that the VOR correctly compensates 
for head motion under all circumstances. The pursuit, or fixation reflex, allows the eye to 
follow the data or text at vibrations at around 1 Hz, but at frequencies higher than 3 Hz, 
reading the vibrating display isn’t only difficult, it becomes nearly impossible as the fixation 
reflex can no longer keep up with this movement (Velger, 1998).  Therefore, it is believed 
that the VOR induces relative motion between the HMD and the human retina that is not 
predictable.  Unfortunately, while the VOR is an essential part of our human composition, 
when viewing HMD’s it can cause significant degradation in performance at the vibration 
frequencies previously specified and this degradation may not be predicted by measuring the 
motion of the user’s head alone. 
 
While vibration and the associated VOR effect are well documented, little has been done in 
the past 40 years to compensate for this effect. The rudimentary solution has been to simply 
increase the size of the text or graphics (Griffin & Lewis, 1978), space out the text (Griffin, 
McLeod, Moseley & Lewis, 1986) or change contrast levels (Moseley & Griffin, 1987) on 
the display.  Each of the cited studies has found that these adjustments cause improved 
reading performance under vibration conditions. Unfortunately, these recommendations run 
counter to current technology investment in HMD technology, which furthers the resolution 
of HMDs in an effort to increase the rate of information transfer between the system and the 
human operator. For all the improvements in the resolution of an HMD, these solutions 
simply recommend rendering relatively simple graphics with more and more pixels rather 
than increasing the information density on the display, as is intended from the investment in 
higher resolution HMDs. A high-resolution display is of little use if it cannot be used to its 
full capacity and the compensation technique of rendering information on these displays with 
larger text and graphics limits the amount of information that can be displayed to the operator 
within the HMD. 
 
Another form of compensation involves image stabilization, by attempting to counteract the 
motion of the HMD.  One method is to adaptively filter the aircraft vibration and apply this 
filtered signal to move information on the HMD synchronously with the sensed aircraft 
vibration to provide image stabilization of viewing tasks. This type of compensation takes 
into account the reference of a primary signal, often from an aircraft mounted accelerometer 
which measures vibration levels, and then filters it through a transfer function, which 
estimates the seat to head vibration transmission. The reliance on estimations in the transfer 
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functions is inaccurate, especially in the 4-6 Hz range as the motion of the head is augmented 
above that of the aircraft due to whole body resonance. These techniques are also vulnerable 
to non-additive interference which effects are uncorrelated, or not caused directly by 
vibration but increase with vibration intensity. Examples are head displacement even after 
vibration is over or voluntary head movements. Finally, this technique can also be applied to 
signals from head-mounted accelerometers to determine movement of the head to integrate 
head position into the equation. However, in this application head trackers are required to 
have a high sampling rate (minimum 120 Hz, 240+Hz recommended). These high rate head 
trackers are expensive, not-readily available, and still do not completely solve the latency 
errors (Daetz, 2000). There have certainly been improvements shown by utilizing adaptive 
filtering techniques but they still suffer from inaccuracy and latency issues and have not been 
tested outside of the computer simulation regime. 
 
As discussed, the primary reason for the degradation in visual performance of HMD’s is the 
VOR effect caused by certain wavelengths of low frequency vibration. Though the VOR may 
be understood from a fundamental standpoint, this research will delve deeper into this topic. 
The adaptive compensation techniques can require multiple signal inputs contributing to the 
latency and inaccuracy. In order to eliminate such issues, this research seeks the answer to 
the question “Is it possible to create an algorithm solely based on measuring and predicting 
the movement of the eye?” This requires a more in-depth understanding of the VOR that to 
date has not been achieved in the real-world application of HMD’s. Two medical studies that 
involved the low-frequency vibration of a subject’s head found that the VOR was predictable 
and acted linearly up to approximately 4 Hz. However, both studies found that the dynamics 
of the VOR began to vary at greater than 4 Hz (Tabak, et al., 1997; Tangarra, et al., 2004). 
The results of this experiment, conducted at real-world vibration frequencies often 
encountered within a flight envelope especially seen in rotor craft, will validate these earlier 
findings or provide a foundation in which to further research on future compensation 
algorithms.  
 
The long term, overall goal of this research is to determine how the image of a HMD can be 
stabilized with respect to the human eye to improve human performance. As previously 
discussed, many compensation techniques have been studied and some have been applied 
successfully within a simulation environment. However, while it is understood that the VOR 
has a destructive effect on visual performance in certain vibrating environments, little to no 
research has been done to study and characterize this effect outside of a medical 
environment. The focus of this study is on establishing a baseline of eye motion relative to 
head motion, specifically by isolating and analyzing the VOR effect. This will be done by 
simplifying the effects of real-world vibration environments by focusing on low-frequency, 
sinusoidal vibration in only one direction (z-axis), while introducing low-level, simple 
viewing, reading and tracking tasks. With an established baseline, further research can be 
performed to determine whether the VOR can be successfully measured and characterized to 
be used as the primary input into a vibration compensation algorithm in more complex, 
multi-axis real-world vibrations.   Finally, the data that is collected will be used to attempt to 
form initial predictive algorithms of eye position based upon eye movement data that directly 
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measure and react to the VOR to provide image compensation in HMDs. These algorithms’ 
feasibility and predictability will be determined for later application with more complex, 
multi-axis real world vibrations. 
 

7. Impact 
 
HMD’s have become a more prevalent technology over the past decade and they continue to 
improve and advance in terms of technology, but also application. F-35 pilots are entirely 
reliant on HMD’s as all their information is now displayed within the helmet with no HUDs 
or panel displays. HMDs have also become a necessary component of the human interface 
within many Army helicopter platforms.  Not only are HMDs being used in all types of 
aircraft, but smaller HMD’s are being used by special operations personnel driving ATV’s or 
other land based vehicles. HMD’s offer excellent advantages in terms of task performance, 
such as missile targeting, but also displaying information which is instantaneously available 
to the user to improve overall performance by enhancing situational awareness. However, in 
low-frequency conditions the effectiveness of using an HMD decreases sharply due to the 
VOR. With the eye stabilized in space and the display still vibrating, the high-resolution 
display and information becomes essentially useless as it can no longer be read. This 
degrades any advantage the HMD may have provided especially if the user is primarily 
reliant on the information displayed on the HMD. While most fixed wing jet-propelled 
aircraft are not subject to these low-frequency regimes for significant lengths of time, 
propeller driven aircraft pilots, helicopter operators and land vehicles drivers will encounter 
these vibration ranges frequently during a mission.  Further, certain fixed-wing jet aircraft are 
subject to buffeting with exposes the pilot to similar vibrations, although for relatively short 
intervals of time.  Current compensation techniques rely on algorithms with multiple inputs 
which make them inaccurate and latent or a quick fix of increasing the text/graphic size 
which defeats the purpose of a high-resolution, detail-oriented display. The long term and 
overall goal of this project is to create an image stabilization algorithm based directly on the 
predication of the movement of the eye. However, limited research has been done on the 
VOR in a real-world setting, thus the scope of this initial experiment is to determine whether 
the VOR is predictable and can be used in such an algorithm. If it can be characterized and 
used as an input signal, then this algorithm and technique could be applied to existing and 
future HMD’s to not only stabilize an image in the low-frequency vibration ranges, but also 
compensate for any vibration movement. A stable displayed image means that it doesn’t 
matter how harsh the environment (buffet regime, rotary aircraft, rough land terrain), the user 
will still be able to access, read and rely on the information from the HMD, which will 
preserve situational awareness and task performance. At the minimum, this research will 
provide a deeper insight into the VOR and its behavior in a real-world environment, a topic 
which has been largely overlooked. 

 
8. Experimental Plan 

a. Equipment: 
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This study will be conducted in the Single-Axis Servohydraulic Vibration Facility located 
in the AFRL Human Effectiveness Directorate (711 HPW/RHCPT).  The human-rated 
Single-Axis vibration table is capable of recreating operational exposures in the vertical 
or Z direction.  An RH System Safety Permit, Single-Axis Emergency Procedures, 
Procedure for Setting Single-Axis Vibration Table Limits, and the Single-Axis Operation 
Checklist are located in the control room of the facility.  The rigid seat with seat pan and 
seat back cushions will be mounted on top of the Single-Axis platform.  The table floor 
and seat base will be instrumented with a triaxial accelerometer pack consisting of three 
miniature accelerometers (ENTRAN EGA 125-10D) embedded in a Delrin cylinder.  
Triaxial accelerometer pads will be placed between the subject and seat pan cushion and 
seat back cushion.  The pads consist of a rubber disk with a triaxial accelerometer 
mounted in the center.  The pads measure the accelerations entering the human body at 
the points of contact with the seating system.  
 
A bitebar and helmet bar will be used to measure head and helmet accelerations. Six 
Entran EGA 125-10D accelerometers are strategically glued to each of the bitebar and the 
helmetbar for calculating the head and helmet pure-axis rotational motions (roll, pitch 
and yaw). Additionally, an array of four, low power infrared LEDs will be mounted on 
one side of the helmet and a high resolution IR sensitive camera will be used to image 
these LEDs. This imagery will be used to determine absolute head position in the x and z 
axes, as well as head pitch. 
  
Subjects will wear a standard flight helmet modified to mount an IR sensitive camera, IR 
LED light source and a monocular LCD display. The 5mm Everlight Infrared LED will 
be used to illuminate the eye to provide a specular reflection and the camera will be used 
to capture the image of the eye to facilitate eye tracking.  The camera will be connected 
to a PC which will run the eye-tracking software to determine eye fixation location based 
on the image of the eye.  The IR LED light source will be driven with custom electronics 
which limit the maximum flow of current to the LED and further provides flexibility to 
reduce the current to the LED during system setup.  The current to the LED will be 
adjusted to illuminate the eye with the lowest possible power.  The custom electronics, 
however, will maintain a current less than 80 mA to the LED, providing illumination well 
within safe limits.  It should be noted that the IR LED will be mounted on the helmet and 
will experience vibration.  However, it will be connected to the custom electronics 
through a 15 foot wire, permitting the drive electronics to be positioned off of the 
vibration table, such that these electronics will not undergo vibration.  This peak current 
was independently measured using a pair of independently-calibrated current meters to 
verify this peak current. The IR LED being used has a peak wavelength of 980 nm. 
According to Figure 1 in ATTACHMENT G, at this maximum output value, the radiant 
intensity is approximately 70 mW/sr. This value was confirmed through measurements 
with a thermocouple.  Given that the LED is positioned no closer than 6 cm from any 
subject’s eye, the corresponding irradiance at this distance is 1.94 mW/cm2.  Based on the 
published standards for eye safety, an irradiance level less than 10 mW/cm2 is considered 
safe for constant IR exposure in the 720-1400 nm range (ICNIRP, 1997, 2000). This max 
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irradiance provided by the system will therefore be significantly lower than the 
recommended safety level and the required illumination for this study will not approach 
the max irradiance level.   
 
Subjects will also wear electrodes on both temples and forehead. These electrodes will be 
attached to a BIOPAC system to conduct electro-oculography (EOG) which measures the 
movement of the eyes with respect to the head. This system records the potential 
difference between the two electrodes as the eye moves from the center, neutral position 
towards either of the electrodes.  Ideally both the optical eye tracker and EOG will 
provide comparable data.  However, due to vibration of the head, it is possible that the 
optical eye tracker will move somewhat with respect to the head while the EOG should 
track eye movements with respect to the user’s head. This instrument is a research 
instrument which has been certified for conformity according to the applicable EN 
standards as documented in the Conformity statement referred to in ATTACHMENT I. 
 
Subjects will be presented with crosshairs on the LCD display in front of their eye and 
will be asked to interact with the projected data.. 

 
b. Subjects: 

 
(1)  Total Number of Subjects:  A minimum of six and maximum of 30 subjects are 
required for the study. 
 
 (2)  Inclusion/Exclusion Criteria:  Subjects cannot be pregnant. Female subjects will be 
required to take a pregnancy test prior to each test session.  The test will be read by a 
Research Monitor or Medical Observer.  Subjects must have normal vision without the 
use of any type of corrective lenses (glasses or contacts). Those with corrective vision 
through LASIK or PRK are qualified. Additionally, the subjects must not have 
experienced any vestibular anomalies (including inner ear infections) within the month 
preceding the investigation. Subjects must not report any discomfort or pain symptoms 
associated with the musculoskeletal system, particularly in the spine and neck.  
 
(3)   Subject Population:  The subjects participating in this study are voluntary military 
personnel who will be initially screened by an approved Research Monitor in accordance 
with ATTACHMENT C.  Once this evaluation is completed, the subjects must be 
specifically cleared for participation in the protocol by the research monitor.   
 
(4)  Male/Female Ratio:  Although every effort will be made to use both females and 
males, the ratio will depend on subject availability.   
 
(5)  Age Range: Subject’s age will range from 20-40 years old.  
 
(6)  Special Subjects:  NA 
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(7)  Compensation:  Subjects will not be compensated for their participation.  
 
(8)  Qualifications and Time Commitment:  Testing will consist of a total of 2 formal test 
sessions per subject. Each experimental session will last approximately one hour.  This 
includes approximately 15 minutes for setup, calibration, and pre-questionnaire, 30 
minutes for the actual test runs and 10 minutes for the post questionnaire session. The 
subject will remain seated and restrained during the entire session. 
 
(9)  Screening for Subjects and Special Tests:  See Items (2) and (3) above.   
 
(10)  Recruitment Procedures:  See Items (2) and (3).   
Subjects will be notified in person or by email (ATTACHMENT D) to determine their 
interest in the study.  They will then be given the opportunity to review the Informed 
Consent Form and ask any questions of the Principal Investigator and/or Research 
Monitor prior to consenting to participation in the study. 
 

c. Duration:  
 

Formal data collection is expected to take up to two months. 
 

d. Description of experiment, data collection, and analysis: 
 

(1)  Vibration Exposure:  The primary vibration exposure will be a low frequency signal 
ranging between 0-10 Hz and will be generated at 0.694 m/s2 rms or 1.387 m/s2  rms. The 
signal will be generated at 1024 samples per second and continuously repeated, as 
necessary, to meet the exposure requirements for each test session described below.   
 
(2)  Calibration:  The eye tracking software will be calibrated for each subject 
individually by conducting a process in which they fixate on pre-determined dots on a 3 x 
3 point grid. This will occur under no vibration and before the formal test runs begin. 
 
(3)  Performance Task A (Single Target Fixation):  A single crosshair image will be 
projected to the user via the LCD screen mounted on the helmet. The crosshair will 
remain in the center of the screen and will not move throughout the duration of this task. 
The subject will attempt to fixate on this point the entire duration. This simulates locking 
on to a target or interpreting a single, stationary point of data or text.  
 
(4)  Performance Task B (Jumping Target):  A single crosshair image will be projected to 
the user via the LCD screen mounted on the helmet. In this task, the crosshair will begin 
at a point on the screen and then disappear and reappear in one of 8 different locations 
based upon the 3x3 point grid. The user is to acquire and lock on to the target. The target 
will continue to change locations throughout the duration of the task run. This simulates 
the user looking for, fixating and then quickly moving from one point of data to another 
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in a different location rapidly. This aims to analyze the saccadic movement of the eye, 
though this may not always occur depending on the distance of the stimulus.  
 
(5)  Performance Task C (Smooth Moving Target):  A single crosshair image will be 
projected to the user via the LCD screen mounted on the helmet. In this task, the 
crosshair will begin on a point on the screen and then smoothly move around the screen 
in a smooth motion always remaining visible. The user is to lock on to the target and 
follow it throughout the duration of the task run. This simulates the user tracking a 
moving target which will analyze the smooth pursuit of the eye. 
 
 
(6)  Subject Clothing and Restraint:  The subjects will wear ABUs during the 
experimental sessions.  The subject will be lightly restrained in the seating system using a 
lap belt and double shoulder harness and asked to maintain an upright posture with their 
hands in their lap, without gripping any part of the chair, as much as possible during the 
test session.   
 
(7)  Training:  There will be no formal training session. The tasks will be explained to the 
subject prior to each experimental session.  The subjects will also experience short (5 s or 
less) exposure of each vibration condition before the beginning the experiment. 
 
(8) Test Sessions and Testing Sequence:  Only one test session will be performed in a 48-
hr period. Prior to initiating the test session, the subject will answer a pre-experiment 
questionnaire to determine vestibular health for both present time and past history. Next, 
the eye-tracker will be calibrated for each subject. See Item (2).  The order of the tasks 
will be controlled for two different groups. Group 1 will be exposed to the 0.1 g peak 
acceleration level for the first test session, and the 0.2 g peak acceleration level for the 
second test session, while Group 2 will be exposed to the 0.2 g peak acceleration level for 
the first test session, and the 0.1 g peak acceleration level for the second test session. 
Both groups will accomplish Tasks A-C in order for both test sessions. Once calibration 
has been established, the subject will begin Task A. The first test vibration frequency will 
in fact be no vibration at 0 Hz. The subject will then perform Task A for 15 seconds. The 
vibration frequency will increase to 2 Hz and the subject will be exposed to this specific 
frequency for 15 seconds without having to perform the task. After 15 seconds, the 
subject will perform Task A for 15 seconds. The vibration will then increase 
incrementally to 4 Hz and again a 15 second acclimation period will ensue before the task 
is performed by the subject for 15 seconds. This same procedure of increasing the 
frequency incrementally and allowing 15 seconds of acclimation exposure before 15 
seconds of task performance will occur at 2, 4, 6, 8 and 10 Hz. After the first task is 
finished the subject will receive a 2 minute break while remaining seated and strapped in 
while the data is uploaded and saved. Then Task B will begin again at 0 Hz and 
increasing to 10 Hz incrementally at 2 Hz, with the same 15 second acclimation period. 
This same procedure, with the break in between each task, will occur for each of the 3 
tasks for Test Sessions 1 and 2. After the 3rd task has been completed by the subject, the 
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subject will perform a post-experiment questionnaire (ATTACHMENT E). Test Session 
2 will follow the same type of procedure; however the vibration change will not be a 
linear increase but will vary. It will follow an 8, 4, 2, 10, 0, 6 Hz vibration sequence. The 
procedure will still remain the same. Total subject exposure time to vibration for each 
task is 150 seconds (2.5 minutes) which equates to a total exposure time for each 
experimental session of 450 seconds (7.5 minutes). ATTACHMENT F lists the frequency 
and task order associated with the two groups and two experimental sessions, as well as 
detailing the amount of exposure time. A 48-hr rest period is required between vibration 
test sessions.   
 
(9) Data Collection and Analysis:  All acceleration data will be low-pass filtered at 100 
Hz and sampled at 1024 samples per second. Data collection will be triggered at the end 
of each of the 15s acclimation periods and collected for the remaining 15s of exposure to 
the given vibration frequency. The data will be processed using an analysis program 
developed for MATLAB® that estimates the head and helmet roll, pitch, and yaw motions 
using the acceleration measurements from the bitebar and helmetbar.  The program also 
estimates the rotational helmet slippage.   
   
The acceleration data collection trigger will be coupled to the BIOPAC system which 
will activate data collection for the electrodes of the EOG system over the same 15s time 
interval. This data will be processed through another MATLAB® analysis program to 
determine the gain and phase of the eye motion at the specific frequency settings and 
tasks. Gain measures the magnitude of the ratio of the VOR eye velocity as compared to 
the head’s disturbance velocity and compares to the expected unified value of 1. The 
phase describes the angular relation between the two velocities with 180° describing 
perfect compensation. 
 
The trigger will also activate the eye tracking video which will be collected on a standard 
DVR. This data will be collected over the same 15s interval and will be processed 
through an eye tracking software developed in MATLAB® which tracks the location of 
the pupil as it moves and compares it to the corneal reflection created by the IR light 
point illuminating the eye.  This data will be compared to the EOG results to confirm that 
they are both accurately capturing the movement of the eye. 
 

e. Safety Monitoring: 
 

The exposures used in this study are considered to place subjects at minimal risk in 
accordance with current human vibration exposure guidelines set forth in ISO 2631-1: 
1997 (see Section 9).  Therefore, a research monitor (physician) or medical observer will 
not be required except to conduct the initial screening to clear subjects for participation 
and to check pregnancy tests for female subjects. 
 

f. Confidentiality protection: 
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(1) Subject participants will be listed by name on a contact roster and assigned a 
study number.  That number will be assigned to a medical pre-screen questionnaire and 
test data.  The roster and test data will be kept separate.  No other personal identifying 
information will be assigned to the data sets.  The link to name and study number will be 
established so the subject can be contacted for testing and if a retest becomes necessary.  
Upon completion of the final report all personal identification records will be deleted, but 
the data will be kept for further analysis.  
 
(2) Medical pre-screen questionnaire sheets will have the study identification number 
written on each sheet.  This is the only identification on the survey sheet and no other 
personal identifiers will be recorded.  
 
(3)   Study staff will maintain direct control of data, paper records, and computer disks 
containing confidential information as they are transported within the organization. 
 
(4)  Study staff will store records and signed Informed Consent Documents in locked 
file cabinets at AFIT/ENV.  711 HPW/RHCP will also permanently store the acceleration 
and eye movement data on a restricted network drive.  At the completion of the protocol, 
all Informed Consent Documents are forwarded to the IRB.  All data entered on portable 
computers will be saved on removable disks, which will in turn be stored in locked file 
cabinets.  Staff will not store computer disks in the portable computer carrying case. 
After initial data analysis, de-identified data may become permanent records in the Air 
Force Collaborative Biomechanics Data Network to permit further data analysis and 
evaluation of algorithms for compensating for HMD image blur resulting from VOR.  

 

9. Risk Analysis 
 

The low levels of vibration and brief exposures used in this study are associated with a low 
potential for health risk in accordance with the current human exposure guidelines (ISO 
2631-1: 1997). Figure 2 in ATTACHMENT H shows the weighted acceleration values for 
each frequency component compared to the Health Guidance Caution Zones provided as 
guidelines in ISO 2631-1:  1997.  As shown in the figure, even for the worse case exposures 
lasting 10 minutes, there is very low potential for health risk.  The level of vibration is akin to 
what a subject would encounter in an everyday, real-world scenario, such as traveling in a car 
over a rough or unpaved road. Even with the addition of 0.2 g (1.387 m/s2 rms) peak 
acceleration, the short duration of the exposure maintains minimal risk for the participants’ 
health. As shown in Figure 2 in ATTACHMENT H, exposure to 0.2 g peak (1.387 m/s2 rms) 
acceleration levels for a maximum of 10 minutes is still within Low Risk Health Effects. 
There is no risk of hearing damage or loss.  The use of a helmet provides some hearing 
protection, although noise levels in the facility are quite low at the targeted low frequencies.  
The helmet is wired so that the subject can hear commands from the performance tasks.  The 
subject may feel fatigued, similar to what might be expected during mild exercise.  Some 



 

An Investigation and Analysis of the Vestibulo-ocular Reflex (VOR) in a Vibration 
Environment 

FWR20130014H, Version 2.00 
AFRL IRB Approval Valid from 15 October 2013 to 14 October 2014 

13 
 

fatigue may be the result of the performance tasks.  It is anticipated that most discomfort will 
disappear once the testing is completed and all equipment is removed.  
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ATTACHMENT A 
 

Informed Consent Document 
 

INFORMATION PROTECTED BY THE PRIVACY ACT OF 1974 
  

Informed Consent Document 
For 

An Investigation and Analysis of the Vestibulo-ocular Reflex (VOR) in a Vibration 
Environment 

 
AFIT/ENV, Wright-Patterson AFB 

Principal Investigator: Michael E. Miller/Ph.D/Assistant Professor, AFIT/ENV, (937) 
255-3636 x4651, Michael.Miller@afit.edu  

 
Associate Investigators: Kalyn Tung/2LT/Master’s Student, AFIT/ENV, (937) 255-3636 

x4651, Kalyn.Tung@afit.edu     
 

Suzanne D. Smith, PhD, Senior Biomedical Engineer, 
AFRL/RHCP, DSN 785-9331, Suzanne.smith@wpafb.af.mil 

 
 
Research Monitor:   Capt Dawn M. Russell, USAF, MPAS, PA-C, AFMC, 711 

HPW/RHCP, DSN 798-3724 dawn.russell@wpafb.af.mil 
 

Medical Observers:   TSgt Bethany L. Repp, USAF, AFMC, 711 HPW/RHCP, DSN 
798-3702  Bethany.repp@wpafb.af.mil 

 
SSgt Andrew J. Jimenez, USAF, AFMC, 711 HPW/RHCP, DSN 
798-3147 Andrew.jimenez@wpafb.af.mil 

 
SSgt Misty A. Hobbs, USAF, AFMC, 711 HPW/RHCP, DSN 798-
3146 misty. hobbs@wpafb.af.mil 

 
 

1. Nature and purpose:  You have been offered the opportunity to participate in the research 
study entitled “An Investigation and Analysis of the Vestibulo-Ocular Reflex (VOR) in a 
Vibration Environment” research study. Your participation will occur sometime between 1 
Oct 2012 and 31 Nov 2012, at the Single-Axis Servohydraulic Vibration Facility located in 
Building 824, Area B, Wright-Patterson AFB.   

 
The purpose of this research is to measure eye movement associated with the VOR during 
low frequency vibration while performing various targeting tasks using a Helmet Mounted 
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Display (HMD). This research seeks to provide a greater understanding of the effects of 
vibration on eye movement and visual performance degradation when using HMDs, and to 
generate baseline data for developing effective compensation techniques to mitigate this 
degradation.   
  
The time requirement for each volunteer subject is anticipated to be a total of 3 visits of 
approximately 00 minutes each.  A total of approximately 6-10 subjects will be enrolled in 
this study. 

 
2. Experimental procedures: You will wear ABUs during the test sessions. You will be 

escorted onto the Single-Axis vibration table, seated in the seating system, and loosely 
restrained.  There will be a rubber pad mounted onto the seat back cushion.  The pad has 
miniature sensors embedded in them for monitoring the vibration that enters your body.  A 
pad is also installed on the seat pan. You will also wear a helmet with a miniature speaker 
located in the ear cuff for hearing commands from the performance task.  The helmet will be 
mounted with a camera with an infrared filter, an infrared light source and a video display 
that will be used for performance tasks. 

 
The low-level vibration exposure signals will be recreated on the Single-Axis vibration table.  
The selected signal will vary between 0-10 Hz.  This level of vibration is akin to what a 
subject would encounter in an everyday, real-world scenario, such as traveling in a car over a 
rough or unpaved road, or when encountering brief, minor turbulence in a commercial 
aircraft.  
 
Each test session will consist of four different tasks that you will perform one at a time. The 
tasks include a single-point fixation task, a tracking of a jumping target task, a smooth 
tracking of a target task, and a reading task. You will be asked to perform each task, not 
necessarily in the order described, one after another with a two minute break between. The 
tasks are expected to take approximately 3 minutes each for a total of 12 minutes of task 
performance. You will be instructed on what to do for each task before the session begins 
and reminded of what the upcoming task will be during each break. 
 
During the formal test session, setup will take approximately 10-15 minutes. When setup is 
complete you will be instructed of the order of your tasks and reminded what the first task 
will be and what to do. You will then be exposed to low-level vibrations increasing in 
specific increments over a determined range or to vibrations varying by a specific increment 
over a determined range. You will be given a 15 second acclimation period for each interval 
and then you will be prompted to begin the task and continue the task for an additional 15 
seconds at that specific frequency interval. The vibration will then increase or decrease to the 
next interval depending on the session and the same 15 second acclimation period will be 
given followed by 15 seconds of performing the task. This will occur a total of 6 times 
including one interval at 0 Hz, or no vibration. You will be given a two minute break, where 
you are to remain seated and lightly restrained. You will be reminded on what the next task 
will be and how to perform it. The process will start over again and will be repeated 
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identically for the four tasks. When all the tasks have been completed, the session will end 
and you will be asked to complete a post-test questionnaire.  You will be observed for any 
signs of dizziness or other side effects, prior to exiting the facility. There will only be one 
formal test session per day. 

 
3. Discomfort and risks:  Due to the very short duration of exposure to the vibration signals 

the probability is low that you will experience any discomfort. However, if you do, you may 
have feelings of annoyance and discomfort in the thighs, buttocks, back, and neck, with some 
muscle aches. You can stop the test at any time by notifying the test conductor.  You should 
discontinue testing if you experience excessive discomfort or dizziness.   
 

4. Precautions for female subjects or subjects who are or may become pregnant during 
the course of this study:  If you are a female, you must read this section prior to signing the 
consent form.  There is little information available concerning the effects of vibration on 
pregnant females.  However, female military members in the USAF are exposed to 
operational environments that include short and prolonged periods of vibration.  Therefore, 
there is a real need to assess the effects of vibration on females for the improvement of 
exposure standards and equipment design criteria.  The following are specific precautions 
that apply to female subjects: 

 
a. Pregnancy - There are no data with which to evaluate the risk to a developing fetus 

(spontaneous abortion or fetal abnormalities) of exposure to vibration.  Pregnant females 
can not participate in vibration studies, no matter what the level of the exposure.  
Pregnancy will be determined by pregnancy tests administered and read by a trained 
medical observer prior to being cleared for testing.  It is appropriate to utilize an effective 
contraceptive technique prior to, and for the duration of, vibration exposures as a human 
subject.  If you become pregnant or feel you might be pregnant, contact your medical 
provider and the study investigator or research monitor. 
 

b. Contraceptives - The use of oral contraceptives in the general population has been 
implicated in an observed increased incidence of medical problems such as inflammation 
of the large veins in the legs and pelvis with formation of blood clots.  These clots may 
be dislodged and travel to the lungs with a potentially fatal outcome.  Current medical 
studies examine these problems in a normal environment.  Medical studies have also 
suggested that smoking and the use of oral contraceptives place the female subject at a 
greater risk.  No studies have been done to examine the influence, if any, of vibratory 
motion on the use of oral or intrauterine contraceptives. 

 
c.  Ovarian Abnormalities - The ovary is subject to cystic enlargement and other conditions 

that may occur with or without symptoms.  There is a possibility that prolonged 
exposures to vibration could increase the normal risk that such an enlarged cyst may burst 
or that the ovary may twist about its support, cutting off the blood supply.  This situation 
would possibly require major surgery to correct the condition with the attendant risks of 
loss of the involved ovary, bleeding, infection, or death. 
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d.  Menstrual Flow - Prolonged exposures to vibration could theoretically result in 

menstrual flow alterations.  To date, female subjects at this facility have not reported any 
unusual problems, nor, to our knowledge, are any reported in the literature. 

 
e.  Breast Support - The forces experienced during vibration exposure under this protocol 

are relatively low.  For your comfort, it is advised that appropriate breast support be used, 
similar to what might be used during exercise.  Females with breast implants will not be 
allowed to participate in this study. 

 
5. Benefits:  You are not expected to benefit directly from participation in this research study, 

but a benefit to the Air Force is expected through an increased understanding of the effects of 
operational vibration on visual performance in these military flight environments.   

 
6. Compensation:  If you are active duty military you will receive your normal active duty pay. 
 
7. Alternatives:  Your alternative is to choose not to participate in this study.  Refusal to 

participate will involve no penalty or loss of benefits to which you are otherwise entitled.  
You may discontinue participation at any time without penalty or loss of benefits to which 
you are otherwise entitled.  Notify one of the investigators of this study to discontinue. 

 
8. Entitlements and confidentiality:   
  

a. Records of your participation in this study may only be disclosed according to federal 
law, including the Federal Privacy Act, 5 U.S.C. 552a, and its implementing regulations.  
Complete confidentiality cannot be promised, in particular for military personnel, 
whose health or fitness for duty information may be required to be reported to appropriate 
medical or command authorities.  If such information is to be reported, you will be 
informed of what is being reported and the reason for the report. 

    
b. You understand your entitlements to medical and dental care and/or compensation in the 

event of injury are governed by federal laws and regulations, and that if you desire further 
information you may contact the base legal office, 88 ABW/JA, DSN 787-6142.  You 
may contact the medical consultant/ research monitor (Capt. Dawn Russell. 

 

c. If an unanticipated event (medical misadventure) occurs during your participation in this 
study, you will be informed.  If you are not competent at the time to understand the 
nature of the event, such information will be brought to the attention of your next of kin.   

 
 

Next of kin or emergency contact information: 
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Name                                                                                    Phone#_________________ 

 
d. The decision to participate in this research is completely voluntary on your part.  No one 

may coerce or intimidate you into participating in this program.  You are participating 
because you want to. Dr. Michael Miller, or an associate, has adequately answered any 
and all questions you have about this study, your participation, and the procedures 
involved. Dr. Michael Miller can be reached at (937) 255-3636 x4651.  Dr. Michael 
Miller or an associate will be available to answer any questions concerning procedures 
throughout this study.  If significant new findings develop during the course of this 
research, which may relate to your decision to continue participation, you will be 
informed.  Refusal to participate will involve no penalty or loss of benefits to which you 
are otherwise entitled.  You may discontinue participation at any time without penalty or 
loss of benefits to which you are otherwise entitled.  Notify one of the investigators of 
this study to discontinue.  The investigator or research monitor of this study may 
terminate your participation in this study if she or he feels this to be in your best interest.  
If you have any questions or concerns about your participation in this study or your rights 
as a research subject, please contact Col William Butler at DSN 986 – 5436 or 
william.butler2@wpafb.af.mil. 

 
e. Your participation in this study may be photographed, filmed or audio/videotaped.  These 

recordings will be archived on CD or similar media, as well as on a limited-access 
government computer.  The the data acquired during your participation will be 
maintained indefinitely and may become permanent records in the Air Force 
Collaborative Biomechanics Data Network.  Storage of the data is required to permit 
further data analysis and to provide a database against which future algorithms for 
overcoming image blur on helmet-mounted displays can be assessed.  You consent to the 
use of these media and data for training, data collection, publication, and presentation 
purposes. Any release of records of your participation in this study may only be disclosed 
according to federal law, including the Federal Privacy Act, 55 U.S.C. 552a, and its 
implementing regulations.  This means personal information will not be released to 
unauthorized source without your permission.  These recordings and data may be used for 
presentation or publication, with your signed permission.  They will be stored in a locked 
cabinet in a room that is locked when not occupied.  Only the investigators of this study 
will have access to these media.   

  
f. YOU FULLY UNDERSTAND THAT YOU ARE MAKING A DECISION WHETHER 

OR NOT TO PARTICIPATE.  YOUR SIGNATURE INDICATES THAT YOU HAVE 
DECIDED TO PARTICIPATE HAVING READ THE INFORMATION PROVIDED 
ABOVE. 

  
Volunteer Signature_________________________________________Date_______________ 
  
Volunteer Name (printed)_________________________________________ 
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Advising Investigator Signature _______________________________Date_______________ 
  
Investigator Name (printed)_________________________________________ 
 
Witness Signature___________________________________________Date_______________ 
 
Witness Name (printed)_________________________________________ 
 
We may wish to present some of the video/audio recordings from this study at scientific 
conventions or use photographs in journal publications.  If you consent to the use of your image 
for publication or presentation in a scientific or academic setting, please sign below. 
 
Volunteer Signature_________________________________________Date_______________ 
 

Privacy Act Statement 

 
Authority:  We are requesting disclosure of personal information, to include your Social 
Security Number. Researchers are authorized to collect personal information (including social 
security numbers) on research subjects under The Privacy Act-5 USC 552a, 10 USC 55, 10 USC 
8013, 32 CFR Part 219, 45 CFR Part 46, and EO 9397, November 1943 (SSN). 
Purpose:  It is possible that latent risks or injuries inherent in this experiment will not be 
discovered until some time in the future.  The purpose of collecting this information is to aid 
researchers in locating you at a future date if further disclosures are appropriate. 
Routine Uses: Information (including name and SSN) may be furnished to Federal, State and 
local agencies for any uses published by the Air Force in the Federal Register, 52 FR 16431, to 
include, furtherance of the research involved with this study and to provide medical care. 
Disclosure:  Disclosure of the requested information is voluntary.   No adverse action 
whatsoever will be taken against you, and no privilege will be denied you based on the fact you 
do not disclose this information.  However, your participation in this study may be impacted by a 
refusal to provide this information. 
__________________________________________ 
ICD Distribution: Original filed with protocol records by PI; copy 1, subject
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Curriculum Vitae 
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PROTOCOL CURRICULUM VITAE                

 
1. NAME:  Michael E. Miller, PhD 
2. GRADE/RANK:  AD-22 
3. CURRENT POSITION TITLE:  Assistant Professor Systems Integration 
4. LOCATION:  AFIT/ENV, WPAFB, OH 
5. EDUCATION: 

PhD, Industrial and Systems Engineering, Virginia Polytechnic Institute and State University 
MS, Industrial and Systems Engineering, Ohio University, Athens, OH, November 1989 
BS, Industrial and Systems Engineering, Ohio University, Athens, OH, June 1987 
 

6. RELEVANT EXPERIENCE:  
 

Assistant Professor, Air Force Institute of Technology, WPAFB, OH, July 2010 to Present 
Delivering graduate education in human systems technology 
Conducting research on workload of multi-aircraft control of remotely piloted vehicles, 
LED-based illumination, and advanced imaging system concepts 
 

Senior Research Scientist, Eastman Kodak Company, Rochester, NY, Sept 1995 to April 2010 
Led and applied image science and systems engineering to research and develop novel 
OLED system architectures for displays and lighting 
Developed and led a group of engineers and psychologists to study and apply human 
vision principles to enhance and quantify image quality 
Designed and evaluated the human-machine interface for digital cameras  

 
 

7. PUBLICATIONS/PRESENTATIONS: 
 

Peer Reviewed Journal Publications: 
1. Gilman, J.M.; Miller, M.E.; Grimaila, M.R. (in press) A simplified control system for a 

daylight-matched LED lamp, Lighting Research and Applications. 

2. Colombi, J.; Miller, M.E.; Schneider M.; McGrogan, J.; Long, D.S.; and Plaga, J.  (in press). 
Predictive Mental Workload Modeling for Semi-Autonomous System Design:  Implications 
for Systems of Systems, Journal of Systems Engineering, 15(4). 

3. Miller, M.E. and Murdoch, M.J. (2009).  RGB to RGBW conversion with current limiting for 
OLED displays, Journal of the Society for Information Display, 17(3), pp. 195-202. 

4. Spindler, J.P., Hatwar, T.K., Miller, M.E., Arnold, A.D., Murdoch, M.J., Kane, P.J., 
Ludwicki, J.E., Alessi, P.J. and Van Slyke, S.A., (2006).  System considerations for RGB 
OLED displays, Journal of the Society for Information Display, 14(1), pp. 37-48. 
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5. Arnold, A., Castro, P., Hatwar, T., Hettel, M., Kane, P., Ludwicki, J., Miller, M., Murdoch, 
M., Spindler, J., Van Slyke, S., Mameno, K., Nishikawa, R., Omura, T., and Matsumoto, S., 
(2005).  Full-color AMOLED with RGBW Pixel Pattern, Journal of the Society for 
Information Display, 13(6), pp. 525-535. 

6. Miller, Michael E. and Yang J. (2003).  Visual display characterization using temporally 
modulated patterns, Journal of the Society for Information Display, 11(1), pp. 183-190. 

7. Yu, Qing, Luo, Jiebo and Miller, Michael E. (2002).  A Triage Metric of Determining the 
Extent of DCT-Based Compression Artifacts in a Digital Image, Journal of Imaging Science 
and Technology, 46 (5), pp. 443-452. 

8. Zwahlen, H. T., Miller, M. E., and Yu, J. (1989).  Effects of misaimed low beams and high 
beams on the visual detection of reflectorized targets at night.  Transportation Research 
Record, 1247, 1-11. 

9. Zwahlen, H. T., Miller, M. E., Khan, M., and Dunn, R.  (1988). Optimization of post 
delineator placement from a visibility point of view.  Transportation Research Record, 1172, 
78-87. 
 

Select Conference Papers (last 5 years): 
1. Gilman, J. and Miller, M.E. (2012).  Daylight Matching with Blended-CCT LED Lamp, 

Proceedings of the Society for Information Display, Boston, MA.  

2. Ochs, K.S., Miller, M.E., and Thal, A. (2012).  Time Valued Technology:  Evaluating 
Infrastructure Replacement with Rapidly Emerging Technology, Proceedings of the 
Industrial and Systems Engineering Research Conference, Orlando, FL. 

3. Machuca, J., Miller, M.E., and Colombi, J. (2012).  A Cognitive Task Analysis-based 
Evaluation of Remotely Piloted Aircraft Situation Awareness Transfer Mechanisms, IEEE 
International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness 
and Decision Support, New Orleans, LA. 

4. Pond, T., Webster, B., Machuca, J., Colombi, J. Miller, M. and Gibb, R. (2012).  Allocation 
of Communications to Reduce Mental Workload, Conference on Systems Engineering 
Research, St. Louis, MO. 

5. Miller, M.E. and Gilman, J. (2011).  Daylight-Matched Lighting for Mixed Illumination 
Environments, Illuminating Engineering Society Conference, Austin, TX. 

6. Schneider, M., McGrogan, J., Colombi, J., Miller, M. and Long D. (2011).  Modeling Pilot 
Workload for Multi-Aircraft Control of an Unmanned Aircraft System, INCOSE 
International Workshop, Denver, CO. 

7. McGrogan, J., Schneider, M., Wirthlin, R., Colombi, J. and Miller, M. (2011).  Using 
Discrete Event Simulation for Manpower Estimates of Semiautonomous Systems, 
Proceedings of the Conference on Systems Engineering Research, Redondo Beach. 
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8. McGrogan, J., Schneider, M., Wirthlin, R., Colombi, J., and Miller, M.  (2011). Predicting 
the Impact of Multi-Aircraft Control on UAS Operations, Industrial Engineering Research 
Conference, Reno, NV. 

9. Miller, M.E. and Basile, J.M. (2010).  Luminance and Saturation Control for RGBW OLED 
Displays.  In Proceedings of the Society for Information Display, Seattle, WA, vol., 41, pp. 
269-272. 

10. Miller, M.E., Hamer, J.W., Ludwicki, J.E. and Arnold A.D. (2009).  Exploiting the 
Flexibility of RGBW OLED Displays:  Trading Color Saturation for Power. In Proceedings 
of the Society for Information Display, San Antonio, TX:  Society for Information Display, 
vol., 40, pp. 935-938. 

11. Miller, M.E., Alessi, P.J., Ludwicki, J.E., White, C.J. and Basile, J.M. (2009).  Perceptual 
Effects of Reducing Blue Power. In Proceedings of the Society for Information Display, San 
Antonio, TX:  Society for Information Display, vol., 40, pp. 1010-1013. 

12. Murdoch, M.J. and Miller, M.E. (2008).  RGB to RGBW Conversion for OLED Displays. In 
Proceedings of the Society for Information Display, Los Angeles, CA:  Society for 
Information Display, vol., 39, pp. 791-794. 

13. Kondakova, M.E., Giesen, D.J., Deaton, J.C., Liao, L.S., Pawlik, T.D., Kondakov, D.Y., 
Miller, M.E., Royster, T.L., and Comfort, D.L. (2008).  Highly Efficient 
Fluorescent/Phosphorescent OLED Devices Using Triplet Harvesting. In Proceedings of the 
Society for Information Display, Los Angeles, CA:  Society for Information Display, vol., 
39, pp. 219-222. 

14. Miller, M.E., Arnold, A.D., and Tutt, L. (2007).  When is Sub-Sampling in RGB Displays 
Practical?  In Proceedings of the Society for Information Display, Long Beach, CA:  Society 
for Information Display, vol. 38, pp. 1146-1149. 
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PROTOCOL CURRICULUM VITAE                
 
1. NAME:  Suzanne D. Smith, PhD 
2. GRADE/RANK:  DR-III 
3. CURRENT POSITION TITLE:  Senior Biomedical Engineer 
4. LOCATION:  711 HPW/RHCP, WPAFB, OH 
5. EDUCATION:  BA    Biology, West Virginia University, 1976 

MSE Mechanical Engineering, West Virginia University, 1980 
PhD   Mechanical Engineering, University of Vermont, 1988 

  
6. RELEVANT EXPERIENCE (last eight years): Thirty-two years experience 

conducting Biomechanics Research, Injury Analysis, Biomaterials Strength Testing, and 
Primate and Human Whole-Body Vibration.  Focal point for 711 HPW human vibration-
related research since 1990.    

 
Senior Biomedical Engineer 
Oct 2011-Present 
Applied Neuroscience Branch, Decision Making Division (711 HPW/RHCP), Air Force 
Research Laboratory, Wright-Patterson AFB OH 45433 
Nov 2003 – Sep 2011 
Vulnerability Analysis Branch, Biosciences and Performance Division (711 HPW/RHPA), Air 
Force Research Laboratory, Wright-Patterson AFB OH 45433-7947 
Head of human vibration research responsible for conducting, directing, and advocating research 
efforts to provide a better understanding of the effects of military operational vibration on the 
comfort, fatigue, performance and health of aircrew.  Conceptualizes, plans, and conducts 
research efforts to develop standards for human exposure to vibration, evaluate and recommend 
mitigation strategies, and support the design and development of aircrew equipment for use in 
vibratory environments. Lead for Applied Bioscience Branch, Cognitive Performance 
Optimization Program. 
 
 
 
 
 
 

 
 

 
 

 
 
 
 



 

An Investigation and Analysis of the Vestibulo-ocular Reflex (VOR) in a Vibration 
Environment 

FWR20130014H, Version 2.00 
AFRL IRB Approval Valid from 15 October 2013 to 14 October 2014 

26 
 

 
 
 
7. PUBLICATIONS/PRESENTATIONS (last seven years): 
 
Smith S. D., Gerdus, E.  (2012).  Characterization and Assessment of Pilot Vibration Exposure 

Aboard the UH-1H Huey Helicopter.  4th American Conference on Human Vibration, 
Hartford, Connecticut, 13  -15 Jun 2012. 

Smith, S. D.  (2012).  Military Aircraft Vibration and the Human Interface.  DOD Human 
Factors Engineering Technical Advisory Group (DoD HFE TAG), Meeting #67, Wright-
Patterson AFB OH, 30 Apr – 3 May 2012. 

Smith, S. D. (2011).  Human Vibration Characteristics and Assessment in Military Aircraft. 
Invited Lecture, Rotary-Wing Aircraft Seating Forum, Washington DC, 26-27 Jul 2011. 

Smith, S. D.  (2011).  Human Performance Augmentation:  Leveraging Human Intrinsic 
Resources for Cognitive Optimization.  Integrated Systems Health Management (ISHM) 
Conference, Boston, MA, 19-21 Jul 2011. 

Smith, S. D., Jurcsisn, J. G. (2010).  Cushion Effects During Low Frequency Jet Aircraft 
Vibration Exposure. AFRL-RH-WP-TR-2010-0080, Air Force Research Laboratory, 
Human Effectivness Directorate, Wright-Patterson AFB OH. 

Smith, S. D.  (1010).  The Characteristics and Challenges of Higher Frequency Aircraft 
Vibration.  Keynote, 3rd American Conference on Human Vibration, Iowa City, Iowa, 1-4 
Jun 2010. 

Smith, S. D., Jurcsisn, J. G., Harrison, C. J.  (2010).  Performance Assessment During Military Aircraft 
Operational Vibration Exposure. Proceedings of the 3rd American Conference on Human 
Vibration, Iowa City, Iowa, 1-4 Jun 2010. 

Smith, S. D.  (2009).  Effects of Intense Noise (Airborne Vibration) on Human Body Vibration 
Response.  4th International Conference on Whole-Body Vibration Injury, Montreal, 
Canada, 2-4 Jun 2009. 

Smith, S. D., Jurcsisn, J. G., Bowden D. R.  (2009).  Characterization and Assessment of Crew 
Vibration Exposure Aboard a Tilt-Rotor Aircraft.  4th International Conference on 
Whole-Body Vibration Injury, Montreal, Canada,  2-4 Jun 2009. 

Smith S.D., Jurcsisn, J.G., Bowden, D. R.  (2008).  CV-22 Human Vibration Evaluation.  AFRL-
RH-WP-TR-2008-0095, Air Force Research Laboratory, Human Effectiveness 
Directorate, Wright-Patterson AFB OH. 

Smith, S. D.  (2008)  Dynamic Characteristics and Human Perception of Vibration Aboard a 
Military Propeller Aircraft.  International J Industrial Ergonomics, Vol 38, pp 868-879. 

Smith, S. D., Smith, J. A., Bowden, D. R.  (2008)  Transmission Characteristics of Suspension 
Seats in Multi-Axis Vibration Environments.  International J Industrial Ergonomics, Vol 
38, pp 434-446. 

Smith, S. D., Bowden, D. R., Jurcsisn, J. G.  (2008).  Multi-Axis Seat Cushion Transmissibility 
Characteristics.  Proceedings of the 2nd American Conference on Human Vibration, 
Chicago, IL, 4-6 Jun. 
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Smith, S. D., Goodman, J. R., Grosveld, F. W.  (2008).  Chapter 5: Vibration and Acoustics in 
Fundamentals of Aerospace Medicine, 4th Ed.  (J. R. Davis, R. Johnson, J. Stepanek, J. 
A. Fogarty, eds), Lippincott, Williams & Wilkins, Philadelphia, PA, May. 

Smith, S. D., Mosher, S. E., Bowden, D. R., Walker, A.Y., Jurcsisn, J. G. (2007).  Head 
Transmissibility Characteristics During Single- and Combined-Axis Vibration Exposures.  
Proceedings of the 42nd United Kingdom Conference on Human Responses to Vibration, 
Institute of Sound and Vibration Research, University of Southampton, Southampton, 
England, 10-12 Sep. 

Smith, S. D. and Mosher, S. E.  (2006).  Vibration Transmissibility Characteristics of the Upper 
Torso During Exposure to Single- and Combined-Axis Vibration.  Proceedings of the 41st 
United Kingdom Group Meeting on Human Responses to Vibration, Qinetiq, 
Farnborough, England, 20-22 Sep. 

Smith, Suzanne D. and Mosher, Stephen E.  (2006).  Chest Transmissibility Characteristics 
During Exposure to Single- and Combined-Axis Vibration.  Proceedings of the First 
American Conference on Human Vibration, NIOSH Publication No. 2006-140, 
Morgantown, WV, 5-7 June. 

Smith, Suzanne D. and Smith, Jeanne A.  (2006).  Seat Cushion and Posture Effects in Military 
Aircraft Vibration Environments.  Proceedings of the First American Conference on 
Human Vibration, NIOSH Publication No. 2006-140, Morgantown, WV, 5-7 June. 

Smith, S. D.  (2006).  The Effects of Seat Cushions on the Transmission of Vibration to 
Occupants in Military Propeller Aircraft.  Presentation at the 77th Annual Scientific 
Meeting of the Aerospace Medical Association, Orlando, FL, 14 – 18 May. 

Smith, Suzanne D. and Smith, Jeanne A.  (2006).  Head and Helmet Biodynamics and Tracking 
Performance in Vibration Environments.  Aviation, Space, and Environmental Medicine, 
Vol. 77, No. 4,  April. 

Smith, Suzanne D.  (2006).  Seat Vibration in Military Propeller Aircraft:  Characterization, 
Exposure Assessment, and Mitigation.  Aviation, Space, and Environmental Medicine, 
Vol. 77, No. 1, January. 

Smith SD, Nixon CW, von Gierke HE.  (2006).  Chapter 19 Damage risk criteria for hearing 
and human body vibration.  In:  Ver IL, Beranek LL, eds. Noise and vibration control 
engineering, principles and applications, 2nd Edition, John Wiley and Sons, Inc., New 
Jersey. 

Smith, S. D. and Smith, J. A.  (2005).  Multi-Axis Vibration Mitigation Properties of Seat 
Cushions During Military Propeller Aircraft Operational Exposures.  Proceedings of the 
43rd Annual SAFE Symposium, Salt Lake City, Utah, 24 – 26 Oct. 

Smith, Suzanne D. and Smith, Jeanne A.  (2005)  C/CC-130J Human Vibration Investigation:  
Synchrophaser Effects.  AFRL-HE-WP-TR-2005-0107, Air Force Research Laboratory, 
Wright-Patterson AFB OH, May, 2005. 

Smith, Suzanne D.  (2005)  Super Cobra (AH-1Z) Human Vibration Evaluation.  AFRL-HE-WP-
TR-2005-0114, Air Force Research Laboratory, Wright-Patterson AFB OH, August, 
2005. 

Smith, Suzanne D. (2005).  Evaluation of Human Exposure to Higher Frequency Propeller 
Aircraft Vibration:  Scientific Approach, Techniques, and Results.  Paper presented at the 
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Department of Defense Human Factors Technical Advisory Group (DoD HFE TAG) 
Meeting 53, Sub-Tag on Human Factors Test and Evaluation, Panama City, FL, 23 – 26 
May, 2005. 
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PROTOCOL CURRICULUM VITAE 
                

1. NAME:  Kalyn Tung 
2. GRADE/RANK:  2LT 
3. CURRENT POSITION TITLE:  System’s Engineering Master’s Student 
4. LOCATION:  AFIT/ENV, WPAFB, OH 
5. EDUCATION: BS Systems Engineering (focus on Aeronautical Engineering), United 

States Air Force Academy, 2012 
  
 MS System’s Engineering (focus on Human Systems and Airborne 

Systems), Air Force Institute of Technology, completion date- March 
2014   

 
6.  RELEVANT EXPERIENCE: Near completion of the course work associated with the 

Human Systems specialization. The courses include HFEN 61- Human Performance 
Measurement, and HFEN 670 – Human Interaction Technologies, which provide exposure to 
human experimental research. 
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1. NAME:  Bethany L. Repp 
2. GRADE/RANK:  TSgt 
3. CURRENT POSITION TITLE:  Medical Technician 
4. LOCATION:  711 HPW/RHCP, WPAFB, OH 
5. EDUCATION:  

a. Technical School (Aerospace Medical Technician) Sep – Dec 2001 
Obtained Emergency Medical Technician Certification 

 
6. PROFESSIONAL TRAINING/COURSEWORK: 

a. Allergy/Immunology Specialty Course Aug-Sep 2006     
     

7. RELEVANT EXPERIENCE:   
a. Maintained EMT-B license for 10 years (EMT# B1372710) 
b. Clinical Rotation, Scott AFB, IL Jan – Mar 2001 
c. Medical Technician (Clinic –Family Health Clinic Wright-Patt AFB, OH) 2001 – 2003 
d. Medical Technician (Clinic-Family Health Clinic Offutt AFB, NE) 2003-2005 
e. Medical Technician (Clinic-Family Health Clinic Pope AFB, NC) Jan 2006-Aug 2006 
f. Allergy/Immunology Technician Pope AFB, NC Aug 2006-Jan 2010 
g. Medical Technician (Flight Medicine Clinic Pope AFB, NC) Jan 2010-July 2010 
h. Allergy/Immunology Technician (Wright Patterson AFB, OH) July 2010-July 2011 
i. Medical Observer AFRL (Wright Patterson AFB, OH) July 2001-present 
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1. NAME:  Andrew J. Jimenez 
2. GRADE/RANK:  SSgt 
3. CURRENT POSITION TITLE:  Medical Technician 
4. LOCATION:  711 HPW/RHCP, WPAFB, OH 
5. EDUCATION:  

a. Thomas Aquinas College, Santa Paula, CA 93060 
Jun 2001; BA in Liberal Arts 

b. Community College of the Air Force 
Apr 2011; AA in Allied Health Science 

 
6. PROFESSIONAL TRAINING/COURSEWORK: 

a. Aerospace Medical Training 
b. CITI Training 
c. C-STAR AFSC Skill Set Training:  

1) Fundamentals of Nursing:  patient assessment; calculate, prepare, and administer 
medications; initiate, regulate, and discontinue peripheral intravenous therapy. 

2) Nursing Care of Patients with Special Needs: assist with chest tube 
insertion/monitor water seal drainage; suture minor laceration, insert, irrigate, and 
remove nasogastric tube; establish, maintain, and remove closed urinary drainage 
system. 

3) Nursing care of Patients in Emergency Situations: apply splint, trim, bivalve, and 
remove cast 

          
7. RELEVANT EXPERIENCE:   

a. SSgt Jimenez has actively performed as a certified medical technician for 9 years in Air 
Force Medical Centers.  

b. Two years Labor and Delivery/Post-Partum, Elmendorf AFB, Alaska. 
c. One year Pediatric Clinic, Elmendorf AFB, Alaska 
d. Five years Aeromedical Evacuation Technician, Ramstein AB, Germany. 
e. Experienced with Microsoft Office 2007/2010 
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1. NAME:  Misty A. Hobbs 
2. RADE/RANK: E-5/SSgt 
3. CURRENT POSITION TITLE:  Medical Technician 
4. LOCATION:  711 HPW/RHCP, WPAFB, OH 

 
5. PROFESSIONAL TRAINING/COURSEWORK: 

d. Aerospace Medical Training 
e. CITI Training 
f. C-STAR AFSC Skill Set Training:  

4) Fundamentals of Nursing:  patient assessment; calculate, prepare, and administer 
medications; initiate, regulate, and discontinue peripheral intravenous therapy. 

5) Nursing Care of Patients with Special Needs: assist with chest tube 
insertion/monitor water seal drainage; suture minor laceration, insert, irrigate, and 
remove nasogastric tube; establish, maintain, and remove closed urinary drainage 
system. 

6) Nursing care of Patients in Emergency Situations: apply splint, trim, bivalve, and 
remove cast 

g. EMT- Basic Exp 03/13 
          

6. RELEVANT EXPERIENCE:   
a. SSgt Hobbs has actively performed as a certified medical technician for 9 years in Air 

Force Medical Centers.  
b. Two years Same Day Surgery, Wright Patterson AFB, Ohio 
c. Two years Surgical Inpatient Unit, Wright Patterson AFB, Ohio 
d. Two years Emergency Department, Landstuhl Regional Medical Center, Landstuhl 

Germany. 
e. Two years Neonatal Intensive Care Unit, Landstuhl Regional Medical Center, Landstuhl 

Germany. 
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1. NAME:  Sherrie R. Foster 
2. GRADE/RANK:  Contractor, ORISE (Oak Ridge Institute for Science and Education)   
3. CURRENT POSITION TITLE:  Research Assistant 
4. LOCATION:  711 HPW/RHCP, WPAFB, OH 
5.  EDUCATION:   AA, Edison Community College, 2009 

Biomedical Engineering Student, Wright State University, BS 
anticipated 2013 

 
6. RELEVANT EXPERIENCE (last six years):   

 WSU - Participated in research to determine if the current transducer used by 
obstetric sonographers could be redesigned in such a way to alleviate work related 
musculoskeletal injuries (2009) 

 WSU - Conducted background research on the current transducer and its effects on 
human mechanics (2009) 

 WSU - Interviewed sonographers from local and national obstetric practices to utilize 
their field knowledge on improvement possibilities for their work 
environment/transducer  (2009) 

 WSU - Collected/analyzed force related data and presented findings to professor and 
university staff (2009) 

 
7. RELEVA NT COURSE WORK AND ACTIVITIES: 

 Anatomy and Physiology (I, II, III) 
 Calculus (I, II, III) 
 Physics (I, II, III) 
 MATLAB 
 Circuit Analysis 
 Biomechanics 
 Statics/Dynamics 
 Biofluids 
 Biomedical Circuits 
 Linear Systems 
 Biomedical Engineering Society       
 Participated in the Engineering in Medicine Event 
 Demonstrated a transvenous pacemaker implantation to area high school students to  

peak interest in the field of biomedical engineering  
 Interacted with students regarding engineering opportunities in the medical and 

  research fields 
                                                                              

8. AWARDS: 
 Semifinalist for the Science, Mathematics and Research for Transformation 

(SMART) Scholarship, 2010  
 Phi Theta Kappa Honors Society, 2009 
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 Guistwhite Academic Scholar Award, 2009                                                                                       
 All-Ohio Academic Award:  First-Team, 2009 
 Coca-Cola Silver Scholar Award, 2009                                                                                                    

 
9. WORK HISTORY 

 Undergraduate Teaching Assistant: Anatomy and Physiology II Lab           
Winter 2012. Reinforced the lectures with the students to understand the structure and 
functions if the following: 
o Gross Anatomy of the Brain and Muscles 
o Central/Peripheral Nervous Systems 
o Special Senses 
o Blood 

 Aided in preparing/cleaning the anatomy classroom for the bi-weekly labs 
 Proctored exams 
 Research Assistant (ORISE) 711 HPW/RHCP, June 2012 to current, support research 

activities in the area of engineering (vibration), physiology, and psychology including 
set up of instrumentation and equipment, collection and processing of data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROTOCOL CURRICULUM VITAE 
                

1. NAME:  Brian J Grattan 
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2. GRADE/RANK:  Contractor,  
3. CURRENT POSITION TITLE:  Senior Mechanical Technician 
4. LOCATION:  711 HPW/RHCP, WPAFB, OH 
5. EDUCATION: A.S. - Survival and Rescue, Community College of the Air Force, A.S. - 

Aircraft Armament, Community College of the Air Force and a B.S. - Social Psychology, 
Park University 
 

6. RELEVANT EXPERIENCE: Performs periodic maintenance modifies and configures test 
facilities for research experiments. Operates dynamic test faculties for human and equipment 
studies. Acts as test conductor on facilities. Prepares vivarium facilities and equipment for 
brain stress research. Facility maintenance manager for Air Force Civil Engineering and 
outsourced contractors. 

 
7. WORK HISTORY: Over 20 years of experience on maintenance and modification of 

USAF Aircrew Life Support systems. 15 years of experience in the supervision and training 
individuals in aircrew equipment operations and maintenance. Maintained for five years 
USAF fighter munitions delivery systems. Over 10 years of experience in dynamic human 
and equipment testing. 
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  PROTOCOL CURRICULUM VITAE 
                

1. NAME:  Clifford T Hatch 
2. GRADE/RANK:  E-6, TSgt  
3. CURRENT POSITION TITLE:  NCOIC; Vibration research 
4. LOCATION:  711 HPW/RHCP, WPAFB, OH 
5. EDUCATION: A.S. - Community College of the Air Force 
6. RELEVANT EXPERIENCE:  Performs inspections, maintenance, fitting, and quality 
assurance on combat edge equipment and survival equipment.  Worked on JHMCS helmet, 
HGU-55/P helmet, PCU-15B/P harness, CSU-13B/P, Anti-g Garment, CSU-17/P Anti-g Vest, 
Night Vision Devices, PRC-90-2 & PRC-112B-G Rescue Radio.  Technical expert on all Fighter 
based AFE equipment.  Managed PMEL, HAZMAT, Munitions, Flight-line operations, and 
Building manager. Assists/Performs periodic maintenance modifies and configures test facilities 
for research experiments.  
7. RELEVA NT COURSE WORK AND ACTIVITIES: IRB Training, SIXMODE and 

Single-Axis Vibration Facility Operation and Maintenance Training 
9. AWARDS:  Nominated Warrior of the Year-2012, NCO of the Quarter 2011(1Q), 

Nominated Warrior of the Year -2010, Received decoration for Superior Performer in 
2010 ACC UCI, Superior Performer in 2010 4 OG Turkey Shoot, Award Life Support 
Airman of the year 2009 

10. WORK HISTORY: 2001 Stationed at Cannon AFB, NM.  Deployed to Misawa AB, 
Japan for four months.  Supported multiple training TDY’s.  2006 Stationed at Seymour 
Johnson, AFB NC.  Deployed to Afghanistan twice, responsible for ANCOIC operations and 
logistics.  Supported multiple TDY’s for spin up training for future deployment rotations.  
Presently stationed at Wright Patterson, AFB OH.  Acting NCOIC for Vibration Research, 
supervises two NCO’s.  Total of 10 years of experience on maintenance and modification of 
USAF Aircrew Life Support systems. 6 years of experience in the supervision and training 
individuals in aircrew equipment operations and maintenance. 
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PROTOCOL CURRICULUM VITAE 
                
 

1. NAME:  Benjamin C. Steinhauer 
2. GRADE/RANK: Contractor, Infoscitex (IST) - a DCS Co. 
3. CURRENT POSITION TITLE:  Engineering Assistant 
4. LOCATION:  711 HPW/RHCP, WPAFB, OH 
5. EDUCATION: B.S. Biomedical Engineering,  

Wright State University, OH, 2012 
M.S. Biomedical Engineering 

Wright State University, OH, 2013 (expected) 
6. PROFESSIONAL TRAINING/COURSEWORK/SOCIETIES: 

h. CITI Training  
i. Order of the Engineer 
j. Biomedical Engineering Society 
k. National Society of Collegiate Scholars 
l. Registered User of Radioactive Isotopes and Radiation-Generating Equipment   

7. RELEVANT EXPERIENCE: 
a. Performance Degradation During Exposure to Operation Vibration, July 2012 - Present 
b. H-60 Seat Comparative, Crashworthiness, and Airbag Testing, Jan 2012 – Present 
c. Automated System for Demineralizing Bone, Aug 2011 – June 2012 
d. Thermoelectric Heating/Cooling Cot, Litter, and Sleeping Bag, June 2011 – Dec 2011 
e. Thermoelectric Cooling Vest, June 2011 – Apr 2012 
f. Head Neck Restraint System (HNRS), June 2011 – Present 
g. Traumatic Brain Injury (TBI) iPhone Therapy App, Aug 2010 – Dec 2010 
h. Human Intent Prediction (HIP), June 2010 – Aug 2010 
i. Virtual Worlds Wargamming, Mar 2010 – June 2010 

8. TECHNICAL SKILLS: 
a. Operation and Maintenance of the SIXMODE, Single-Axis Facility, HIA, and VDT 
b. Anatomy and Physiology of the Human Body Teaching and Dissection 
c. EME DAS 
d. MATLAB 
e. Circuit Design and Soldering  
f. Filter Design and Instrumentation 
g. Sensors 
h. Medical Imaging 



 

An Investigation and Analysis of the Vestibulo-ocular Reflex (VOR) in a Vibration Environment 
FWR20130014H, Version 1.00 

AFRL IRB Approval Valid from  
38 

9. WORK HISTORY: 
a. Engineering Assistant, June 2011 – Present 

Infoscitex (IST) - a DCS Co., Wright Patterson AFB, OH, 711th HPW/RHCP 
b. Student Researcher, Mar 2010 – Dec 2010 

Tec^Edge, Dayton, OH, AFRL 
10. AWARDS: 

a. Dean’s List High Honors (multiple quarters) 
b. Academic Leadership Pipeline Scholarship (ALPS) 
c. Eric Gartz Award 

11. PUBLICATIONS: 
Steinhauer Benjamin, Pack Jessica, Wright Nathan, et.al., Assessment of a 
Thermoelectric Vest Through Physical and Mental Performance, Technical Report, 
AFRL-RH-WP-TR-2012-XXXX, Apr. 2012. (in-process) 
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ATTACHMENT C 
 

Screening Checklist 
 
Subject ID: 
 
Age: 
 
Gender: 
 
(Women Only) Are you pregnant or suspect to be pregnant?     YES/NO 
 
(Women Only) Do you have breast implants?      YES/NO 
 
Do you wear corrective lenses (glasses/contact lenses)?    YES/NO 
 
Have you had corrective eye surgery (PRK/LASIK)?        YES/NO 
 
Have you been diagnosed or treated for any eye injuries or disease(s)?   YES/NO 
 
Have you been diagnosed or treated for any inner ear injuries or disease(s)?      YES/NO 
 
Have you experienced any inner ear problems in the past month (vertigo, dizziness, infection)?  
YES/NO 
 
Have you consumed alcohol in the past 24 hours?       YES/NO 
 
Are you currently experiencing or in the past month have experienced: 

 
…cold or allergy congestion symptoms?       YES/NO 
… pain in the musculoskeletal system especially in the back or neck?        YES/NO 
… Numbness/Tingling/Weakness in Extremities?          YES/NO 
… Constant Headaches?          YES/NO 
… Shooting Pain into Arms/Hands/Legs/Feet?                  YES/NO 
 
If any above are YES, explain below: 
 
 
 
 
 
 
 
Date reviewed: 
Signature of research monitor: 
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ATTACHMENT D 
       

Example Recruitment Email 
 
Hello.  My name is [PI or AI] and I am a [professor or Master’s student] at the Air Force 
Institute of Technology in the System’s Engineering department (AFIT/ENV). We are planning 
to conduct a human vibration study entitled “An Investigation and Analysis of the Vestibulo-
ocular Reflex (VOR) in a Vibration Environment". We are conducting a study to evaluate and 
analyze eye motions while using an Helmet Mounted Display (HMD) within a low-frequency 
vibration environment.  You will be briefly exposed to low-frequency vibrations ranging from 0-
10 Hz in the 711 HPW/RHCPT Single-Axis Vibration Facility.  During one test session you will 
be asked to perform four tasks while interacting with the HMD: a single point fixation, following 
a jumping target, tracking a smooth moving target and a reading task. Each task will be evaluated 
for 15 seconds over the 0-10 Hz interval at 5 different frequencies with a two minute break 
between tasks.  A test session (one per minimum of 48 hours) will require approximately 60 
minutes to include pre-screening, setup, testing and post questionnaires. The total exposure to 
vibration per session will be less than 10 minutes. There will be a total of three test sessions you 
will be asked to attend. If you choose to participate, you will greatly assist the effort to 
understand eye motion in vibration environments for use in advancing HMD technology to aid 
the warfighter.  If you would like more information, I can send you the Informed Consent Form 
that provides greater details on the study.  If you would like to see a demonstration of the Single-
Axis Vibration Facility and discuss the study, or have any questions, please let me know.   
 
If you know that you are interested in participating, please notify me by email or phone, and I 
will forward the Informed Consent Form to you.  Once you receive the form, please let me know 
if you have any further questions.  I will notify you via email or phone to schedule a training 
session. 
 
Thank you, 
[PI or AI] 
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ATTACHMENT E 
 

Post-Test Questionnaire 
 
Subject ID: 
 
Session #:  
 
HEALTH 
 
Are you experiencing any vestibular issues (dizziness, disorientation, nausea)?   YES/NO 
 
Are you currently experiencing: 

 
… pain in the musculoskeletal system especially in the back or neck?        YES/NO 
… Numbness/Tingling/Weakness in Extremities?          YES/NO 
… Headaches?             YES/NO 
… Shooting Pain into Arms/Hands/Legs/Feet?                  YES/NO 
 
If any are YES, please report immediately to an investigator and/or medical monitor 
 
TEST 
 
Next to each of the four tasks RATE from 1-10 (1 being easy, 10 being very difficult), the 
difficulty of the task.  

Task A (Single Target Fixation):  
 

    Task B (Jumping Target): 
  
   Task C (Smooth Target Tracking): 

  
    Task D (Reading Task):  

 
Also, in the space provided, please write your overall impression of each of the tasks (what made 
it difficult, easy, boring, etc). 
 
Task A (Single Target Fixation): 
 
 
Task B (Jumping Target): 
 
 
Task C (Smooth Target Tracking): 
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Task D (Reading Task): 
 
List in order from GREATEST to LEAST, the amount of vibration you experienced in each of 
these body parts? (Head, Upper Back/Chest, Lower Back/Abdomen, Buttocks, Upper Leg, 
Lower Legs/Feet) 
  
 
 
 
 
 
 
 
 
 
 
 
 
Finally, please provide your overall thoughts/impressions of this experimental session. Please be as 
detailed as possible. 
 
 

 

Amount of 
Vibration 

Experienced 
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ATTACHMENT F 
 

Test Matrices 
Frequency Exposure Order 

 

Frequency Exposure Order  

Experimental Session 1 Experimental Session 2 

0 Hz 8 Hz 
15 sec acclimation period at next Hz 

2 Hz 4 Hz 
15 sec acclimation period at next Hz 

4 Hz 2 Hz 
15 sec acclimation period at next Hz 

6 Hz 10 Hz 
15 sec acclimation period at next Hz 

8 Hz 0 Hz 
15 sec acclimation period at next Hz 

10 Hz 6 Hz 
End Task 

Notes: 
Frequency Exposure at each Hz = 30s 

 
Test Session Order 

Test Session 1 Test Session 2 
0.1 g (0.694 m/s2 rms) 

Acceleration Level 
0.2 g (1.387 m/s2  rms) 

Acceleration Level 
Task A 

2 minute rest period 
Task B 

2 minute rest period 
Task C 

End session 
 

 
Total Subject Vibration Exposure Time: 

Per Task = 2.5 mins (150s) 
Per Testing Session = 7.5 mins (450s) 
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ATTACHMENT G 
 

 
Figure 1. Relative Intensity vs. Forward Current for Everlight 5mm Infrared LED 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Relative Intensity vs. Forward Current 
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ATTACHMENT H 
 

 
Figure 2. Health Guidance Caution Zones (ISO 2631-1:  1997) showing low risk health effects of study 

exposures. 
 

 
 
 
 
 



 

An Investigation and Analysis of the Vestibulo-ocular Reflex (VOR) in a Vibration Environment 
FWR20130014H, Version 1.00 

AFRL IRB Approval Valid from  
46 

ATTACHMENT I 
   

BIOPAC Conformity Documentation 
 

 
(See Accompanying Document entitled:  Conformity MP150.pdf) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Oct 2013–Mar 2014

An Analysis of Eye Movements With Helmet Mounted Displays

12V927

Tung, Kalyn A., 2nd LT, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENV-14-M-67

711th Human Performance Wing,/RHCPT
2800 Q Street, B824, Wright-Patterson AFB, OH, 45433-7947
785-9331, Suzanne.Smith@wpafb.af.mil
Suzanne D. Smith, PhD

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution Statement A:
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Helmet or Head-Mounted Displays (HMD) applications have expanded to include a range from advanced military
cockpits to consumer glasses. However, users have documented loss of legibility while undergoing vibration. Recent
research indicates that undesirable eye movement is related to the vibration frequency a user experiences. In vibrating
environments, two competing eye reflexes likely contribute to eye movements. The Vestibulo-ocular Reflex responds
to motion sensed in the otoliths while the pursuit reflex is driven by the visual system to maintain the desired image
on the fovea. This study attempts to isolate undesirable eye motions that occur while using a HMD by participants
completing simple visual tasks while experiencing vertical vibration at frequencies between 0 and 10 Hz. Data collected
on participants’ head and helmet movements, vibration frequency, acceleration level, and visual task are compared to eye
movements to develop a method to understand the source of the unintended eye movements. Through the use of Electro-
Oculography (EOG) eye movements were largest when a 4 Hz vibration frequency was applied, and are significantly
different from the EOG signal at 2, 8 and 10 Hz. Stepwise regression indicated that head pitch acceleration and helmet
slippage pitch acceleration were correlated with EOG values.

15. SUBJECT TERMS

Human Factors, Information Display, Helmet-Mounted Display

U U U UU 155

Dr. Michael Miller (AFIT/ENV)

(937) 255-3636 x4651 Michael.Miller@afit.edu


